
Customer API | v3.22  
 

The latest version of this document can always be found at 
https://cdn.simwood.com/docs/simwood_apiv3.pdf

Simwood Customer API
Overview 4
Document Conventions 4
Technical 5

Architecture 6
Basic Operations 7

Basic GET Requests 7
JSON Output Format 7
Authenticating Requests 8
PUT and DELETE requests 9
POST requests / Reports 10

API Endpoints 12
Tools 13
Account Management 14

Credit Account Management 15
Prepay Account Management 16
Termination Rate Functions 18
General Accounting Reports / CDRs 20
Summary Reports (Instant) 21
Event Notifications 22

Voice Termination 23
Account Limits (and Dynamic Channel Limits) 23
Adjusting your Channel Allocation 24
Channel Statistics 25
Real-Time Calls in Progress 26
Call Control 27
Voice CDRs (Inline Response) 28
Rejected Calls 29

Voice Trunks 30
Trunk Management 30
Trunk Balances 32
Per-Trunk Realtime Call Information 33
Trunk IP Functions 34
Outbound Destination Prefix ACLs 35
Trunk Routing Configuration 36
Bulk Number Association 36
IDA Outbound Management 38

Inbound Numbering 39
Number Allocation 39
Number Routing Configuration 43
Inbound Trunk Association 58
Mobile Number Inbound SMS Configuration 59
Number Validation 61
Number Lookup 62

Number Porting 63
Geographic Number Porting (“GNP”) 64
Mobile Number Porting (“MNP”) 69

Fax and SMS Messaging 71
Inbound Fax Retrieval 71
Outbound SMS 72
Outbound FAX 74

HTTP POST (Inbound Events) 75
Event-driven Webhooks 75
Received Fax 76
Received Fax (Beta) 77
Received SMS (http) - Deprecated 78
Received SMS (http_json) 79
Outbound Fax Reports 80
Outbound SMS Delivery Reports (DLRs) 81

Simwood API v3.22
2

Change Log / Document History 82

Simwood API v3.22
3

BETA

Overview
What is it?

The Simwood Customer API ("Application Programming Interface") is a way for your own back-office
systems and web sites to seamlessly integrate with Simwood and manage your wholesale telephony
account and services.

What can I do with it?

The API is the preferred way to configure your Simwood services. Everything in the portal can also be
configured via the API (and in some cases the API offers some additional functionality)

Our portal is based on the API, and everything you can do in the portal you can do through the API in your
own code. We’ve deliberately made it this way. The only exception to this is the authentication elements of
the portal, as using your API key to log in on the web would be cumbersome.

Document Conventions
Some features of the API are marked with additional labels, explained below;

Simwood API v3.22
4

This is a new feature or addition to the API or underlying stack which
should be considered in BETA. It has been tested internally before
being made available but it’s possible bugs may still be present and we
would welcome your feedback should you find any unexpected
behaviour.

NB The parameter format of BETA endpoints can change at any time
and without notice. Whilst we endeavour to keep this to a minimum we
strongly recommend unattended scripts do not rely on BETA functions
of the API or you test for the expected response format.

A single $ symbol indicates that calls to this API endpoint will result in a
one-off charge in accordance with our standard rates which can be
found at https://simwood.com/pricing (e.g. Porting Fees) or within the
API itself (e.g. Gold Number activation charges)

A $.. symbol indicates that calls to this API endpoint can result in the
creation or alteration of a recurring charge. e.g. Number Rental.

The charges applicable to these will likely depend on your account type,
for more information consult your account documentation, published
price lists, or contact the Operations Desk.

$

$..

Technical

How does this differ to previous API versions?

In brief;
Version 1 was SOAP based and arguably overly complicated for most customer requirements.
Version 2 was more XML-RPC based.
Version 3, this version, is close to a REST-based API, notably;

- Every ‘resource’ has a static URL.
- Multiple HTTP methods can be used against a resource where appropriate i.e. GET, PUT, POST,

DELETE
- Authentication is Basic Authentication, secured by HTTPS (SSL/TLS).
- Error codes are mapped to HTTP errors and delivered as both HTTP response headers  

and body text or a body JSON response.
- Output from the API is in JSON format.
- Input is generally by request parameters or JSON objects (for PUT and POST requests) 

There are also some fundamental changes to the architecture to ensure one user cannot impact others.  
This is a combination of caching, automatic request rate limiting, duplicate request elimination, and out of
band reporting.

Whereas previously all queries were responded to real-time as requested, some are now considered
‘reports’ which are fed off to a cluster of report servers operating against a cluster of database servers. This
enables the client to return immediately and either poll for results, or be notified when results are available.  
More often than not this is immediate but a customer requesting a year’s CDRs every second cannot cause
disruption! Of course, trivial queries are still returned immediately.

What about non-JSON responses?

Our API historically supported multiple response formats; PHP Serialized, XML, Plain Text and the ubiquitous
JSON. Of these JSON has been the most popular, with very few customers electing to use the other
formats.

As we’ve built upon our API, and added more advanced number routing, and other configuration options, that
are designed to be expressed as a JSON object we’ve deprecated the other format options.

Any endpoints that previously responded in other formats will continue to do so, to ensure we don’t break
any existing customer implementations, and the “JSON-only” approach will only be used for new API
endpoints.

Future versions (beyond v3) of the API will be JSON only.
  

Simwood API v3.22
5

Architecture

Some of our customers follow how we do things with interest - this page is for them.
If you don’t care, you can safely skip it.

The best way to keep up to date with the latest developments behind the scenes is via our blog;
http://blog.simwood.com/

Web

The v3 API, like its predecessors, is predominantly written in PHP served by nginx. nginx takes care of basic
HTTPS functions but all header generation is done in code. This way the API can be RESTful in its
responses. There is no state maintained in the web-app.

Databases

As before, many queries are made against MySQL although we have dedicated servers for the API’s use.
These are built for queries and are slaves of masters. We can build additional query servers sideways as
required. Writes are, of course, made against the masters. Increasingly, API requests are served directly
from our underlying REDIS ram-based data stores where possible.

Middle-ware

This API introduces multiple layers in between the above for performance and scale:

Beanstalkd Queues

We use Beanstalkd a lot for internal messaging. In this API where a request is non-trivial and
involves other processes, we’ll simply queue a job.

REDIS

REDIS replaced memcached as our caching data store, and is used for much more as it supports a
number of advanced data structures facilitating vastly improved monitoring and real-time information.

See http://blog.simwood.com/2013/06/real-time-big-data/ for more information.

App Servers

We have numerous daemons running monitoring specific queues (pipes in beanstalkd language).
One of the beautiful features of beanstalkd is that it is blocking, i.e. 10 daemons can watch the same
pipe and code will block waiting for a response.

One, and one only, will be given the job when there is one. This avoids polling – meaning this is
extremely efficient and very scalable as we can just spin up as many daemons as required. Further,
release of a job to a daemon is sub-millisecond giving the queueing the performance of direct
requests. Most complicated jobs involve multiple daemons working through a sequence of queues.

Simwood API v3.22
6

http://blog.simwood.com/
http://blog.simwood.com/2013/06/real-time-big-data/

Basic Operations
The Simwood API can be found at the following URI;

https://api.simwood.com/v3/

PLEASE NOTE THAT TLS v1.1 OR HIGHER IS MANDATORY FOR ALL REQUESTS

Basic GET Requests

A number of end-points in the API can be accessed with a simple GET request and will therefore work in a
browser. Some do not require authentication and are a good place to start and to test connectivity to the API.

Two simple examples are:

https://api.simwood.com/v3/tools/myip - will return your IP address as seen by the API
https://api.simwood.com/v3/tools/time - will return a timestamp from the API

JSON Output Format
You’ll see that in both above cases the output is JSON, e.g:

JSON (“JavaScript Object Notation”) is used as it’s a lightweight format designed for exchange of data
structures which has an additional advantage of being relatively human readable. All modern languages such
as PHP, ASP, .net, Node, Perl etc can handle JSON structures and convert to/from their native objects or
arrays easily making it the ideal choice for REST APIs.

“Pretty” JSON

JSON is designed to be machine-readable and as such is sent with minimal whitespace by default however
when developing it is often useful to see the output in a more human-friendly format, you can achieve this
simply by appending “?pretty=true” to any endpoint e.g https://api.simwood.com/v3/tools/time?pretty=true
would look like this;

Simwood API v3.22
7

{"timestamp":1388748052,"rfc":"Fri, 03 Jan 2014 11:20:52 +0000"}

{
 “timestamp":1388748052,
 "rfc":"Fri, 03 Jan 2014 11:20:52 +0000”
}

https://api.simwood.com/v3/tools/myip
https://api.simwood.com/v3/tools/time
https://api.simwood.com/v3/tools/time?pretty=true

Authenticating Requests

Most commands are linked to an account and therefore require authentication.

We use standard Basic Authentication, i.e. your client makes a request, we respond with a 401 response
code, your client replies with the API username and password included.

Your API username and password were provided at the time of creating your Simwood account, if you do not
have these please contact our support team and we’ll be happy to provide you with them.

Note that, at present;

- Your API username and password is not the same as your portal login details
- Your API password is designed to be used programatically, and is typically not memorable
- Your API details allow full access to your account, and must be protected accordingly.
- You cannot, currently, change your API username or password - although our support team are happy

to do so if required (e.g. if your details are lost or you have reason to believe they are compromised)

If you pull up an example URL in your browser it’ll do this for you. For your code, different development
languages will tackle this in different ways but most will ‘just deal with it’ automatically for you.

cURL for example, will just take the username and password as parameters, e.g.:

curl --user name:password https://api.simwood.com/v3/…

PHP’s cURL implementation is very similar in that you’d set CURLOPT_USERPWD with curl_setopt.

An example authenticated GET request is:

https://api.simwood.com/v3/accounts/{ACCOUNT}/prepay/balance

This example URL will not work directly in a web browser as the {ACCOUNT} placeholder in the above  
will need to be replaced with account ID (typically a six digit number).

Which would return the following

Adding ?pretty=true to the end of the URL would give you the same information in the following format;

 
Both are treated equally by a JSON parser, and are syntactically valid, however the ‘pretty-printed’ version
may be useful for debugging. 

Simwood API v3.22
8

[{"balance":"12.32","currency":"GBP"}]

[
 {
 “balance”:"12.32",
 “currency":"GBP"
 }
]

http://www.php.net/manual/en/function.curl-setopt.php

PUT and DELETE requests

In the spirit of being REST-ful, many URLs can be acted upon with different methods. The URL does not
change, only the HTTP method used against it. One example of this is number configuration, for example;

https://api.simwood.com/v3/numbers/{ACCOUNT}/allocated/{NUMBER}

Again, this will not work as {ACCOUNT} and {NUMBER} need replacing with real data.  
{NUMBER} is the e164 representation of the number, e.g. 442031234567.

GET is the default method, accessing the above end-point with a GET will return the current configuration of
that number. PUT will create the end-point, i.e. allocate the number to your account if it does not exist
already. DELETE will remove the end-point, i.e. de-configure and remove the number from your account.

PUT is context sensitive and specific uses will be described in greater detail within different commands.
Briefly though, whereas:

https://api.simwood.com/v3/numbers/{ACCOUNT}/allocated/{NUMBER}

will create a number end-point, i.e. allocate the number but

https://api.simwood.com/v3/numbers/{ACCOUNT}/allocated/{NUMBER}/config

will configure a number, i.e. write the sent config to it.

DELETE works more uniformly but only at the level it operates, e.g.

https://api.simwood.com/v3/numbers/{ACCOUNT}/allocated/{NUMBER}

will de-configure and remove a number but

https://api.simwood.com/v3/numbers/{ACCOUNT}/allocated/{NUMBER}/config

will just remove the configuration, leaving the number on your account

Setting the method is language specific and PUT and DELETE cannot be easily replicated in a browser.
Almost all environments/browsers will default to GET so the chances are if it doesn’t work as you expect you
are using the GET method.

For development languages which do not permit all HTTP methods to be used you can pass a hidden
parameter named _method in an HTTP POST or GET and set the method to use in there.  
This will override the actual HTTP method used. For example, in an HTTP form you may use: 

<input type="hidden" name="_method" id="_method" value="put" />

All modern languages allow HTTP methods to be used correctly, and we would strongly encourage
this in preference to setting a _method parameter.  

Simwood API v3.22
9

POST requests / Reports

POST is very similar to PUT but is used where one is not updating a specific resource, i.e. requesting
reports, or when creating a new resource

For example, to request a summary of calls and charges for the current day the end-point would be:

https://api.simwood.com/v3/accounts/{ACCOUNT}/reports/voice/summary/day/in

You would use POST for this request as whilst you are sending a request to the server and the end-point is
fixed, what that end-point represents and what you get back are variable. POST is used for all report type
requests.

The output from such a POST request (which requests a report) will typically be small, i.e.:

You will note that this is not in fact a summary of today’s charges. It is a hash that uniquely identifies that
report and a link to it. As the return suggests, you can retrieve the actual results with a GET request to

https://api.simwood.com/v3/files/{ACCOUNT}/4e591630fedf4aa149db9874fb33fe23.

But don’t worry...

Whilst is is important to understand the effect a given request method will have, we are somewhat relaxed in
our interpretation of them where possible. DELETE is always DELETE with no alternative but we will accept
a POST instead of a PUT and a GET instead of a POST where possible. You should not assume we will, and
should adhere to the RESTful way, but this flexibility is there if you wish to test behaviour in a browser for
example.

Report De-duplication

As described above, when you request a report the return will just contain a link to the results. That link will
be unique to that specific report, i.e. in the above example the hash for today’s summary will be the same
with every request, but only every request today. Tomorrow will generate a different hash. If you make
multiple requests for the same report before you retrieve it, duplicates will simply be ignored and the report
will only be run once.

However, once a report has been run, the results await your collection within the next 5 minutes. Further
requests with the same hash will continue to be ignored as long as that report exists. Once the report is
retrieved it will be deleted. Only after a report has been deleted (either by retrieval or expiry), will an identical
report request result in a new report.

NB reports expire after 5 minutes, any attempt to access the report after 5 minutes will result in a 404 error,
you should therefore build your application to poll the report URL multiple times as soon as possible after
submitting your request or use the callback URL detailed below.

Hashes are intended to be generated sensibly. For example, a given report for today will always give the
same hash. A different report for today or the same report for tomorrow will give different hashes. Reports on
different numbers will generate different hashes. Further, de-duplication will only apply where previous
results have not been retrieved.

The intention here is to protect the system from the coder who wishes to request a year’s CDRs every
second. He can, but all requests other than the first will be ignored until he retrieves the results. This rather
extreme example is actually real and was a consequence of the way the v2 API paginated results and
required clients to step through them. More than a few customer implementations reached the end of the
results and went into a race condition.

Simwood API v3.22
10

{"mode":"vsind","date":"2012-01-28","type":"voice_summary","account":"ACCOUNT","format"
:"json","hash":"4e591630fedf4aa149db9874fb33fe23","link":"\/v3\/files\/ACCOUNT\/
4e591630fedf4aa149db9874fb33fe23"}

Report Retrieval

As shown above, the return from a report request will give a hash and an encoded URL. The hash can be
used to access the results directly, even from another system, using a GET request to, for example:

https://api.simwood.com/v3/files/{ACCOUNT}/4e591630fedf4aa149db9874fb33fe23

This URL can be polled at a sensible interval as it will simply return a 204 No Content until the report exists.
Once the report does exist, it can be downloaded only once and then will be automatically deleted.

To negate the need for polling, clients may instead wish to specify a ‘callback’ URL with their request. This
should be POSTed as a variable called ‘callback’. The response to the request will be identical as without it
but on successful generation of the report we will make a POST to the URL provided. This will contain a
single HTTP POST variable call ‘payload’ which will contain the report hash in JSON format, e.g.:

The client should then GET the report as usual within a maximum of 5 minutes, after which it may expire.

Dates in Reports

Most reports can be run for a range or at a specific date. Where omitted they will generally default to today.  
Dates are always expressed in MySQL format (YYYY-MM-DD hh:mm:ss), e.g. 2012-01-01 14:30:00

File (Report Output) Handling

Unlike many APIs the Simwood API is asynchronous when requesting some complex reports to improve
performance (this is discussed in more detail above) and some POST requests will result in a small
response containing a hash and ‘link’ to a file e.g.

The functions below are used to retrieve these;

/v3/files/{ACCOUNT}

GET Lists uncollected files on the account

{
 "ff98d8d8fdf9dfd178e72b6e6ba207ff" {
 "name":"ff98d8d8fdf9dfd178e72b6e6ba207ff",
 "content_type":"application/json",
 "length":410,
 "uri":"/v3/files/ACCOUNT/ff98d8d8fdf9dfd178e72b6e6ba207ff"
 }
}

/v3/files/{ACCOUNT}/{HASH}

GET Retrieve specific file on account, where HASH is the hash returned when the
report was requested. File will be deleted after retrieval.

Simwood API v3.22
11

{"app":"reports","id":"76e7a8102f93c636785ea8432c72e07a","data":null}

{
 "mode":"vsind",
 "date":"2012-01-28",
 "type":"voice_summary",
 "account":"{ACCOUNT}",
 "format":"json",
 "hash":"4e591630fedf4aa149db9874fb33fe23",
 "link":"/v3/files/{ACCOUNT}/4e591630fedf4aa149db9874fb33fe23"
}

API Endpoints
If the above has all made sense, you should need little more than a list of the available end-points and the
HTTP methods they support to get going. This follows and you’ll quickly observe they are hierarchical and
hopefully consistent. The method shown indicates behaviour as described earlier.

Each endpoint is documented below in the following format;

Please Note - Where example responses are shown in this documentation they may be reformatted to be
more easily human-readable, the actual response will have escaped slashes (e.g. / replaced with \/) and not
include any excess white space.

The following conventions are used in describing the URL or other parameters

{ACCOUNT} Where a word is capitalised and enclosed by curly braces { } it must
be replaced with the appropriate information e.g. {ACCOUNT} or {IP}

[on | off] Where two or more words are separated by the pipe character | and
enclosed within square brackets [] these are ‘either or’ options.
e.g. a url with the form /latest/[1|5|10] allows you to specify any of the
following 3 URLs;

/latest/1
/latest/5
/latest/10

Arbitrary values (e.g. /latest/15) are not supported

URLs The URLs are shown without the leading https://api.simwood.com/
which must be inserted before the /v3/ when making any API call.

paramname Parameters are shown in italics, these are passed by GET, POST
or PUT in the request and do not form part of the URI (except in the
case of the GET request, when they are part of the query string after
the ? mark)

paramname[] Parameters with square brackets at the end are different and can be
thought of as Array Parameters. These can be passed multiple times
but even if only one item is being included you must include the []
on the end. For compatibility with some languages (e.g. PHP with
Curl) an integer value can be between the square brackets  
e.g the following two examples are equivalent;

?param[]=apple¶m[]=orange¶m[]=pear
?param[0]=apple¶m[1]=orange¶m[2]=pear

/v3/URL

GET Explains what happens when the GET method is used

POST Explains what happens when the POST method is used. Will also explain
what parameter is used for

parameter An example GET / POST or PUT parameter

anotherparam Another parameter to be sent by POST

Simwood API v3.22
12

Tools
The following tools are made available without authentication to help integrate with the Simwood API.

IP Address

Your IP address, as seen by the Simwood API service

Time

The current server timestamp

Explain

This tool is provided to help debug requests to the Simwood API. It accepts any request method (GET, PUT,
POST, DELETE etc) and returns a human-readable report of the information submitted.

NB As this is intended to be a human-readable report for debugging purposes the  
format may change at any time, and without notice, and should not be relied upon. 

/v3/tools/myip

GET Return your external IP address, as seen by the Simwood API

/v3/tools/time

GET Returns the current timestamp

/v3/tools/explain

ANY Returns human-readable report of the request received

Simwood API - Explain Tool
==
Query ID: swAPI547df1c0985db
Timestamp: 2014-12-02 17:26:03
HTTP Request Method: POST
API Request Method: POST
SSL Used: Yes (OK)
== Query String ==
Your query string contained 2 elements;
 test => 1
 pretty => true
== HTTP Post Vars =====================================
No HTTP request body request elements
== JSON Request ==
Valid JSON (Decoded Below)
--
{
 "date_start": "2014-11-25 00:00:00",
 "date_end": "2014-11-26 23:59:00",
 "limit": 50,
 "start": 0,
 "pretty": true,
 "debug": false,
 "filter": {
 "trunk": “920000-L001"
 }
}
== Raw Request ==
{"date_start":"2014-11-25 00:00:00","date_end":"2014-11-26
23:59:00","limit":50,"start":0,"pretty":true,"debug":false,"filter":
{"trunk":"920000-L001"}}
===
Simwood API v3 http://simwood.com/docs/simwood_apiv3.pdf

Simwood API v3.22
13

Account Management
Account Type

Your account will be one of the following four types; developer, startup, virtual_interconnect, or
managed_interconnect, each have different commercials but are functionally identical. All new accounts
start off as ‘Developer’, we encourage you to move to ‘Start-Up’ for production use, and to consider ‘Virtual
Interconnect’ or ‘Managed Interconnect’ as your requirements evolve.

The differences between these account types can be found on the Simwood pricing page.

Charges Apply 
There is a minimum commitment associated with the Start-Up package, along with other
commercial differences. Please see the Simwood Product Brochure for more information

PLEASE NOTE
You can migrate between developer and startup at any time. By changing your package type to Start-Up
please ensure you are aware of the commercial obligations of this package, including the minimum pre-
payment amount (which differs from the developer package) and the minimum total spend per month,
which replaces the service charge of the Developer pack.

It is not possible to switch to our Virtual Interconnect or Managed Interconnect options online either via
the API or Portal. Please contact us if you are interested in these packages.

If you are unsure, please contact our Operations Desk via eMail to team@simwood.com, or call us on  
0330 122 3000 to discuss your requirements further.

/v3/accounts/{ACCOUNT}/type

GET Get your current account type, and limitations 
Account type will be one of the following;  
developer, startup, virtual_interconnect, managed_interconnect
{
 "success": true,
 “data”: {
 “account_type”: “developer”,
 “number_limit”: 5,
 “channel_limit”: 5,
 “min_prepay”: 50
 }
}

PUT Upgrade or downgrade your account 
This option is only available to customers of account_type developer or
startup
account_type One of;

developer downgrade to developer (if startup)
startup upgrade to startup (if developer)

Simwood API v3.22
14

$..

https://simwood.com/pricing

Credit Account Management

The current status of all invoices on your account is available through the API.

PDF Copy Invoices

/v3/accounts/{ACCOUNT}/credit/invoices/unpaid

GET List of unpaid invoices on account (since June 2010)

/v3/accounts/{ACCOUNT}/credit/invoices/paid

GET List of paid invoices on account (since June 2010)

/v3/accounts/{ACCOUNT}/credit/invoices/all

GET List of invoices on account (since June 2010)

{
 "Invoices": [
 {
 "InvoiceNumber": "I3010999999",
 "Date": "2014-02-30",
 "DueDate": "2014-02-30",
 "Currency": "GBP",
 "Net": "200.00",
 "VAT": "40.00",
 "Total": "240.00",
 "AmountPaid": "240.00",
 "AmountCredited": "0.00",
 "AmountDue": "0.00"
 }
],
 "TotalDue": {
 "GBP": 0
 },
 "TotalOverDue": null
}

/v3/accounts/{ACCOUNT}/credit/invoices/{INVOICE_NUMBER}[.pdf]

GET Get invoice INVOICE_NUMBER as a pdf file. The .pdf suffix is optional.

Simwood API v3.22
15

Prepay Account Management

/v3/accounts/{ACCOUNT}/prepay/summary

POST Requests a report of Summary of account movements. 
If the optional from_date and to_date parameters are not specified will default
to today.

from_date Start date of report (in form YYYY-MM-DD)

to_date End date of report (in form YYYY-MM-DD)

/v3/accounts/{ACCOUNT}/prepay/prepayments/all

GET List all account pre-payments

/v3/accounts/{ACCOUNT}/prepay/prepayments/latest/[1|10]

GET List last (1) or last ten (10) pre-payments to account

/v3/accounts/{ACCOUNT}/prepay/transfers/all

GET Transfers between this prepay account and others.

/v3/accounts/{ACCOUNT}/prepay/transfers/latest/[1|10]

GET List last (1) or last ten (10) transfers on the prepay account

Simwood API v3.22
16

Prepay Account Balance

The API provides tools for checking and protecting your pre-paid balance(s)

Low Balance Alerts

You can set an amount at which you will receive a notification (configured via the notifications, detailed
below) when your balance drops below the specified amount. A maximum of one notification will be sent per
day.

Balance Locking

We provide the ability to ‘lock’ a portion of your balance to make it unavailable to spend. i.e. you can specify
the balance at which we’ll treat your account as ‘out of credit’ and therefore kill calls in progress.

This is normally zero but the balance locking facility enables customers to keep large credit balances without
risking the entire amount in the event that they, or a customer, suffer a compromise.

You can set alerts based on the available balance (i.e. balance-locked balance) using the balance alert
above.

NB The above ‘locked balance’ function is provided on a ‘best-efforts’ basis and is not intended as a  
substitute for securing your own VoIP platform. You remain responsible for all calls made on your  
account.

/v3/accounts/{ACCOUNT}/prepay/balance

GET Return balance of account.
[{"balance":"2.46880","currency":"GBP"}]

/v3/accounts/{ACCOUNT}/prepay/balance/alert

GET Returns the current level of alert.
[{“account”:ACCOUNT,”alert_balance":150,"alert_available":50}]

PUT Sets the alert balance to the specified alert_balance

alert_balance The balance at which an alert should be generated

/v3/accounts/{ACCOUNT}/prepay/balance/locked

GET Returns the ‘locked’ balance, this represents a portion of your pre-paid balance
that cannot be consumed - e.g. to protect against unexpected spend
[{"account":ACCOUNT,"balance":10.4688,"locked":5,"available":5.4688}]

PUT Sets the protected amount to the specified balance.  
This amount remains in your account but cannot be spent.

balance The amount to be protected.

DELETE Remove the locked balance, allowing the full amount of your pre-paid balance
to be used for calls.

Simwood API v3.22
17

Termination Rate Functions

Available Tariffs

Some account types have more than one available tariff or rate deck, these can be viewed as follows where
this is applicable to your account;

Ratecard Downloads (CSV Format)

Our latest termination rates are also always available in CSV and Excel (XLSX) format from the portal  
https://portal.simwood.com/ or in CSV format via the API;

/v3/accounts/{ACCOUNT}/rates/tariffs

GET Request tariffs available on your account, these are shown together with the
prefix required for dynamic rate deck selection (no prefix is required for calls
using the default rate deck)
{
 "success": true,
 "data": [
 {
 "description": “Legacy GBP Platinum",
 "servicelevel": 1,
 "quality": “Platinum”,
 “prefix”: 999001,
 "url": “\/v3\/accounts\/929999\/rates\/csv\/Simwood_Platinum.csv"
 },
 {
 "description": “Legacy GBP Gold",
 "servicelevel": 2,
 "quality": “Gold”,
 “prefix”: 999002,
 “default”: true,
 "url": “\/v3\/accounts\/929999\/rates\/csv\/Simwood_Gold.csv"
 }
]
}

/v3/accounts/{ACCOUNT}/rates/csv/[default|silver|platinum|gold|name]

GET Request the latest ratecard in CSV format 

NB: The options silver, platinum and gold are only for ‘legacy’ or
‘startup’ account types with multiple rate decks. Virtual Interconnect and
Managed Interconnect customers should use default or the file name
provided from the above query

Simwood API v3.22
18

Destination Lookup

/v3/accounts/{ACCOUNT}/rate/{NUMBER}

GET Returns the cost of calling the specified number in your account currency.
Each rate array is keyed by the relevant deck (1 - platinum, 2 - gold, 3 - silver)
and shows (p)eak, (o)ffpeak, (w)eekend rates and the (c)onnection charge.
{
 "desc":"UK - fm3 - Mobile (T-Mobile)",
 "rates":{
 "1":{"p":"0.01200","o":"0.01200","w":"0.01200","c":"0.0000"},
 "2":{"p":"0.01100","o":"0.01100","w":"0.01100","c":"0.0000"}
 }
}

Simwood API v3.22
19

General Accounting Reports / CDRs

/v3/accounts/{ACCOUNT}/reports/voice/summary/day/[in|out]

POST Request a summary of [incoming] or [outgoing] voice charges

date Optionally specify date in YYYY-MM-DD format to request
report as at date, otherwise defaults to current.

/v3/accounts/{ACCOUNT}/reports/voice/summary/day/[in|out]

POST Request a summary of [incoming] or [outgoing] voice charges

date Optionally specify date in YYYY-MM-DD format to request
report as at date, otherwise defaults to current.

/v3/accounts/{ACCOUNT}/reports/voice/cdr/day

POST Request daily CDR report

date Optionally specify date in YYYY-MM-DD format to request
report as at date, otherwise defaults to current.

/v3/accounts/{ACCOUNT}/reports/voice/cdr/latest/[10|100|1000|10000]

POST Request report of last [10 | 100 | 1,000 | 10,000] Voice CDRs

/v3/accounts/{ACCOUNT}/reports/sms/cdr/day

POST Request daily SMS CDR report

date Optionally specify date in YYYY-MM-DD format to request
report as at date, otherwise defaults to current.

/v3/accounts/{ACCOUNT}/reports/sms/cdr/latest/[10|100|1000|10000]

POST Request report of last [10 | 100 | 1,000 | 10,000] SMS CDRs

Simwood API v3.22
20

Summary Reports (Instant)

The new Summary Reports are, unlike the CDRs above, not asynchronous, the response is inline.

NB These are intended to be indicative only and are not suitable for billing purposes.

Summary Report Keys

The following keys are available for summary reports;

Example Summary Report

The report below was generated based on a key of ‘trunk’ with a sort of ‘calls’; 

/v3/accounts/{ACCOUNT}/summary/([in|out])/{KEY}

GET / POST Request an inbound or outbound summary report by {KEY} (see below).  
If ‘in’ or ‘out’ is omitted from the URI bi-directional traffic will be shown.

The parameters below can be provided in the query string (with the exception
of the ‘filter’ parameter) or, preferred, as a JSON object in the request

date_start Optionally specify date/time in YYYY-MM-DD HH:mm:ss
format to request report from date_start, otherwise defaults
to start of current day. NB Dates must be specified in GMT

date_end Optionally specify date/time in YYYY-MM-DD HH:mm:ss
format to request report from date_end, otherwise defaults to
now.

limit Optionally specify limit of results to return, default 9999

sort Key to sort by

filter Array of “search_key” => “value” e.g. {“trunk”: “930000-
TEST”} would generate a report only for the trunk named
“930000-TEST”

destid Summary by Destination ID

iso Summary by ISO Country Code (of destination)

codec Summary by Codec

tag Summary by Tag (as set with “X-simwood-tag” header)

trunk Summary by Trunk

Simwood API v3.22
21

[
 {
 "trunk": "930000-ACME",
 "calls": 378,
 "acd": 1.6,
 "minutes": 603.32,
 "charges": 8.32
 },
 {
 "trunk": "930000-WIDGETINC",
 "calls": 2856,
 "acd": 1.56,
 "minutes": 4458.47,
 "charges": 23.01
 }
]

Event Notifications
Some notifications can now (as of v3.15) be received via Webhooks, for more information see  
https://cdn.simwood.com/docs/simwood_webhooks_beta.pdf

The {HASH} referred to above can be generated locally and is simply an md5()’d version of the notification
address. This is used simply to avoid potential url encoding issues.
*SMS notification requires credit balance, sent messages will be deducted from your usual credit.

 

/v3/accounts/{ACCOUNT}/notifications

GET List active notifications on your account

["blocked_calls","prepay_debit"]

/v3/accounts/{ACCOUNT}/notifications/available

GET List available notification TYPEs

/v3/accounts/{ACCOUNT}/notifications/{TYPE}

GET List configured recipients for notifications of {TYPE}

DELETE Delete all configured notifications of {TYPE}

/v3/accounts/{ACCOUNT}/notifications/{TYPE}/{METHOD}

GET Shows all configured recipients of notifications of {TYPE} using {METHOD}

METHOD is one of email or sms*

POST Add a new notification recipient to receive notifications of {TYPE} using
{METHOD}. Returns a hash corresponding to this recipient

destination eMail address or Mobile Number (in E164 format) of the
recipient.

/v3/accounts/{ACCOUNT}/notifications/{TYPE}/{METHOD}/{HASH}

GET Shows the information on this recipient

DELETE Deletes this recipient

/v3/accounts/{ACCOUNT}/notifications/history

GET Retrieve a history of recent (last 60 days) notifications on your account 
All parameters below are optional, by default will return all notifications for the
last 60 days.
Returns a JSON Array of Objects, each Object contains a “data” attribute
which contains an Object containing all variables in the original notification.
Please note if the original message contained a password it will be redacted
and replaced with ###### as these are not stored.

class Class of notification (e.g. trunk or billing)

date_start Start date (no more than 60 days ago)

date_end End date (YYYY-MM-DD HH:ii:ss)

Simwood API v3.22
22

Voice Termination

Account Limits (and Dynamic Channel Limits)

Dynamic Channel Limits
Applies only to accounts without a dedicated channel allocation 
Any dynamic channel limits shown in the "dynamic" block take precedence over the usual account limits.
e.g. in the above example due to the low balance there is a concurrent channel limit of 3 channels and a rate
limit of 30 calls per 10 seconds.

Channel Allocation (Inbound/Outbound)
Applies only to accounts with a dedicated channel allocation 
For customers with a dedicated self-managed channel allocation, channel_allocation_adjustable is true. You
can divide this allocation between inbound and outbound as described below.

Channel Allocation (Global Numbers)
Applies only to accounts with global numbers  
For customers with global numbering (i.e. non UK or USA), channel_allocation_global_numbers reflects the
inbound channel allocation across your Global Numbers

Other Limits  
These limits are set per-account by Simwood and are based on your traffic.  
We impose these limits to protect and manage our network utilisation.  
If you require more channels or a higher rate of calls per second please contact team@simwood.com

/v3/voice/{ACCOUNT}/limits

GET Shows limits in effect on an account including any Dynamic Channel Limits

{
 "channel_allocation": 30,
 "channel_allocation_global_numbers": 10,
 "channel_allocation_adjustable": false,
 "limit_concurrent_in": 10,
 "limit_concurrent_out": 20,
 "limit_concurrent_out_per_number": 10,
 "limit_concurrent_out_international": 3,
 "limit_concurrent_out_hotspot": 2,
 "limit_rate_out": "10/1s",
 "limit_rate_out_international": null,
 "limit_rate_out_hotspot": "2/12h",
 "dynamic": {
 "balance": "15.52680",
 "limit_concurrent_out": 3,
 "limit_rate_out": "30/10s"
 }
}

Simwood API v3.22
23

Adjusting your Channel Allocation
Customers with a dedicated channel allocation can manage this allocation, splitting channels between
inbound and outbound as required.  

/v3/voice/{ACCOUNT}/limits

PUT Update channel limits

JSON request limit_concurrent_in Inbound channel limit

limit_concurrent_out Outbound channel limit

NB the above must, together, total the value of channel_allocation

{
 "limit_concurrent_in": 10,
 "limit_concurrent_out": 20
}

JSON
response

{
 "success": true
 “data”: {
 "limit_concurrent_in": 10,
 "limit_concurrent_out": 20
 }
}

Simwood API v3.22
24

Channel Statistics

 

/v3/voice/{ACCOUNT}/channels/current

GET Current channel utilisation
NB: this is returned as an array (with one member) for compatibility  
with the /channels/history function detailed below
[
 {
 "datetime": "2014-02-30 12:34:35",
 "channels": 22,
 “channels_in”: 10,
 “channels_out”: 12
 }
]

/v3/voice/{ACCOUNT}/channels/history

GET Recent (around 24h) channel utilisation samples
The channels count shows the peak number of channels in use between the
previous datetime timestamp and the current one.

interval Optional interval for samples in the following form; 
1m - One Minute
5m - Five Minutes (Default)
1h - Hourly

[
 {
 "datetime": "2014-02-30 09:29:52",
 "channels": 24,
 “channels_in”: 10,
 “channels_out”: 14
 },
 {
 "datetime": "2014-02-30 09:28:52",
 "channels": 22
 “channels_in”: 10,
 “channels_out”: 12
 },
 {
 "datetime": "2014-02-30 09:27:52",
 "channels": 22
 “channels_in”: 10,
 “channels_out”: 12
 },
 {
 "datetime": "2014-02-30 09:26:52",
 "channels": 20
 “channels_in”: 10,
 “channels_out”: 10
 },
 {
 "datetime": "2014-02-30 09:25:52",
 "channels": 17
 “channels_in”: 9,
 “channels_out”: 8
 },
 •••
]

Simwood API v3.22
25

Real-Time Calls in Progress

As of version 3.15 this information is now also able to be pushed directly to you via Webhooks, for
more information see https://cdn.simwood.com/docs/simwood_webhooks_beta.pdf

The above example shows many calls in progress to the UK, along with two to Mexico (MX) and one to
Spain (ES) - calls are grouped both by destination (keyed by a unique numeric identifier for that destination)
in then "calls" group and by country in "countries" - this makes it simple to alert, for example, if there are any
more than a predefined number of calls to any country you don’t expect.

See http://blog.simwood.com/2014/01/2-quick-scripts-to-help-you-sleep-easier/ for some examples of
how this data can be used to help protect you against fraud and monitor your VoIP traffic.

/v3/voice/{ACCOUNT}/inprogress/current

GET Number and value of calls in progress relative to account balance. Useful for
fraud monitoring.
{
 "datetime": "2014-02-30 12:34:35",
 "total": 1.164,
 "callcount": 107,
 "balance": 24.406,
 "percent_available": 0.25,
 "approx_seconds_remaining": 56838,
 "calls": {
 "1739": {
 "location": "UK - Fixed",
 "country": "GB",
 "total": 0.85,
 "callcount": 85
 },
 "2303": {
 "location": "UK - Mobile - T-Mobile",
 "country": "GB",
 "total": 0.244,
 "callcount": 19
 },
 "277": {
 "location": "Mexico - Mexico City",
 "country": "MX",
 "total": 0.04,
 "callcount": 2
 },
 "2761": {
 "location": "Spain - Mobile - Telefonica",
 "country": "ES",
 "total": 0.02,
 "callcount": 1
 }
 },
 "countries": {
 "MX": {
 "total": 0.04,
 "callcount": 2
 },
 "ES": {
 "total": 0.02,
 "callcount": 1
 },
 "GB": {
 "total": 1.094,
 "callcount": 104
 }

 }
}

Simwood API v3.22
26

Call Control

This is designed to be used in conjunction with the Webhook HTTP Events (Beta) detailed at  
https://cdn.simwood.com/docs/simwood_webhooks_beta.pdf

The {CALL_ID} in the above URL is the call_id element in the JSON objects you receive for
call_inbound, call_outbound and inprogress_calls HTTP Webhook events posted to your platform.

As this is a BETA endpoint, the information returned from the above may change at any time, although we
will endeavour to ensure backwards compatibility therefore, whilst parameters will be added, it is unlikely that
any of the above will be removed.  

/v3/voice/{ACCOUNT}/inprogress/{CALL_ID}

GET Get information on a current call in progress
{
 "success": true,
 "data": {
 "to": "447700900123",
 "start": "2019-09-23 12:27:12",
 "progress": "2019-09-23 12:27:17",
 "answered": "2019-09-23 12:27:21",
 "destid": "2303"
 }
}

DELETE End a call in progress
{
 "success": true
}

Simwood API v3.22
27

BETA

Voice CDRs (Inline Response)

In addition to the CDR Reports (above) you can retrieve any CDRs from the last three months with a simple
inline response (rather than polling for a report)

This function is temporarily unavailable as of version v3.10.5

NB date_start and date_end must be within the last 90 calendar days  

/v3/voice/{ACCOUNT}/cdr

GET / POST Both GET and POST are supported. The request can either be made as a
GET query string or JSON POST body. At present, the filter attribute is only
supported where requested by POST with a JSON body.

date_start Optionally specify date/time in YYYY-MM-DD HH:ii:ss format
to request report from date_start, otherwise defaults to start
of current day.  
 
NB Dates must be specified in GMT, within the last 90
days

date_end Optionally specify date/time in YYYY-MM-DD HH:ii:ss format
to request report from date_end, otherwise defaults to now.

limit Optionally specify limit of results to return, default 500

start Optional offset to start from (for pagination)

filter Object of “search_key” => “value” e.g. {“trunk”: “930000-
TEST”} would return CDRs only for the trunk named
“930000-TEST”.

At present you can filter only on the following values, more
will be added in the future; from, to, toISO, trunk, tag

/v3/voice/{ACCOUNT}/cdr/{YYYY-MM-DD}

GET / POST As above, a shorthand way of retrieving CDRs for a particular day. 
The date must be within the last 90 calendar days

limit Optionally specify limit of results to return, default 500

start Optional offset to start from (for pagination)

filter As above

/v3/voice/{ACCOUNT}/cdr/{YYYY-MM-DD}/{REFERENCE}

GET Retrieve more information, where available, on a specific call using the
reference value returned from the above CDRs (or the CDR Reporting)

Simwood API v3.22
28

Rejected Calls

When calls are rejected by Simwood for any reason (e.g. exceeding a channel limit, invalid CLI information,
or because they are on a blacklist or your own do not call list) no CDR is generated and, therefore, they
cannot be retrieved with the above endpoints.

These rejections are notified using the notification endpoint you have configured (e.g. by eMail or HTTP
post)

Additionally, the most recent rejections can be retrieved from the following API endpoints.

NB Rejection data should be considered ephemeral. In any event the above endpoints will never 
return more than data from the current day and the preceding day.

/v3/voice/{ACCOUNT}/rejected

GET Get all available recently rejected calls
{
 "success": true,
 "data": [
 {
 "calldate": "2016-02-08 07:00:04",
 "reason": "maxcost",
 "from": “441632496000”,
 "to": "447700900123",
 "message": "Call to 447700900123 will exceed 0.1 (0.25450)",
 "source_ip": “10.0.0.0”,
 "trunk": "9XXXXX-L001",
 "notified": false
 }
]
}

/v3/voice/{ACCOUNT}/rejected/{REASON}

GET As above, but an optional REASON is specified to return only rejections of the
specified reason (e.g. “maxcost” or “cli”)

Simwood API v3.22
29

Voice Trunks
NB Trunks were previously located at /v3/voice/{ACCOUNT}/outbound however this endpoint,

along with its related sub-resources, are now deprecated in favour of the new, more appropriately
named /v3/voice/{ACCOUNT}/trunks resource. The original endpoint(s) will remain in order to
preserve backwards compatibility, however they will not benefit from any of the new inbound-specific
options.

Trunk Management

Trunks should following the naming ACCOUNT-{ID} e.g. if your account is 930004 and the trunk for ACME
Products you could name the trunk 930004-ACMEPRODUCTS.

The "L001" trunk is your default IP-Authenticated trunk and cannot be renamed, additionally there are some
features (Trunk Balances, Realtime Trunk Calls in Progress etc) that are not available on the L001 trunk. 

Newly created trunks are available for use immediately although, at times, may not show in the outbound
trunk list for a short time. 

/v3/voice/{ACCOUNT}/trunks

GET List all active outbound trunks.

/v3/voice/{ACCOUNT}/trunks/{TRUNK}

GET Request information on specified {TRUNK}

PUT Create new trunk {TRUNK}
NB for an ‘auth’ trunk the SIP password will be returned ONLY as a
response to this API call and cannot be retrieved later. If you forget the
password it can be reset as described below (Trunk Password Functions)

or (if additional optional configuration parameters specified, see
overleaf)
Update existing {TRUNK} settings such as channel and rate limits
type When creating a new trunk can be one of; 

ip create an IP-authenticated trunk
auth create a username/pass authenticated trunk 
 
for compatibility, if not specified defaults to ‘auth’

DELETE Delete trunk {TRUNK} 
NB the default trunk {ACCOUNT}-L001 cannot be deleted

Simwood API v3.22
30

Trunk Options  

NB If you update a trunk and one or more parameters are invalid, the update will succeed with the
valid parameters, please check the output returned and ensure the trunk is configured as you
expect. 

 Please note that all trunk settings are updated immediately, therefore disabling (e.g. by  
setting enabled = 0) is an effective way to block any further calls being made on a trunk. It will  
not stop calls currently in progress. 

/v3/voice/{ACCOUNT}/trunks/{TRUNK}

PUT Update existing {TRUNK} settings such as channel and rate limits

The options below are only to be used when updating an existing trunk

enabled
[optional]

Enable [1] or Disable [0] this trunk.
NB this takes precedence over in/out below

enabled_in
[optional]

Enable [1] or Disable [0] inbound calls on this trunk 
(when being used via SIP registration)

enabled_out
[optional]

Enable [1] or Disable [0] outbound calls on this trunk.

limit_concurrent_*
[optional] 
The * above to be
replaced by one of the
parameters opposite

Concurrent channel limit for the class of calls indicated as  
an integer value or [null] (do not impose a limit)
out out_international
out_international_hotspot out_per_number
in

limit_rate_*
[optional]

Rate limit for each of the above outbound categories in
the form calls/duration (or [null] where no limit) e.g.
5/10s 5 calls per 10 seconds
100/12h 100 calls in 12 hours
NB The timeframe must be one of [12h | 10s | 1s]

cli_format 
[optional]

For inbound calls associated with this trunk, receive the
CLI in the selected format, one of [e164 | +164 | uk | us]

cli_default
[optional]

Default Presentation Number to be presented when no
valid CLI is provided or cli_force_default set (E164
format)

cli_force_default 
[optional]

Set to [1] to force above value to be used on all calls.  
[0] allows customer-specified CLI

nni_default
[optional]

Default Network Number to be used when required  
must be a number on your account in E.164 format
(e.g. 441632960123)

max_cpm 
[optional]

Maximum cost per minute (in your billing currency) of the
B leg of the call. Using this can help ensure a customer
trunk cannot make calls to expensive destinations

max_cpc 
[optional]

To be used in conjunction with the above, sets a
maximum connection cost per call.

max_cost 
[optional]

Sets a maximum cost per call, i.e. when the cost of the
call reaches (approximately) this amount it will be cleared

max_dur 
[optional]

Sets a maximum duration per call, when the call reaches
this duration, it will be cleared.

emergency_enabled  
[optional]

Set to [1] to enable emergency calls  
(requires account activation)

Simwood API v3.22
31

Trunk Balances

Each trunk can have its own balance, this allows you to manage the spend of individual customers.  
You can also view “inprogress” information for a trunk which will show the value of calls in progress.
Where the value of calls in progress exceeds the trunk balance, calls in progress will be ended.

The trunk balance feature is provided for convenience and is not a substitute for your own billing
and credit control procedures. Simwood will not be liable for any calls made on a trunk when its
trunk-specific balance is depleted for any reason.

We strongly recommend that “balance” is used to set an initial balance only, and thereafter the level is
maintained using the “adjust” function.

NB Your account primary -L001 IP trunk does not support Trunk Balances.

/v3/voice/{ACCOUNT}/trunks/{TRUNK}/balance

GET Get balance for {TRUNK}

{
 “success”: true,
 “data”: {
 “trunk”: “920123-ACME”,
 “balance”: 39.544
 }
}

PUT Set or adjust the balance for {TRUNK}

balance Sets the balance of the trunk to balance

- or -

adjust Adjust the trunk balance by the amount shown, use
negative amounts to decrement the balance.

DELETE Remove the balance from trunk {TRUNK}

NB The trunk will function as before, without it’s own balance, so 
will be limited only by your account balance or balance lock  

 
This is NOT EQUIVALENT TO setting a balance to 0 which would 
prevent further calls being made (i.e. Balance exhausted)

Set balance on trunk 920123-ACME to £200

{“balance”: 200}

Adjust balance on trunk 920123-ACME by £50 (e.g. if Customer has topped up)

{“adjust”: 50}

Adjust balance on trunk 920123-ACME by £20 (e.g. to deduct supplementary services)

{“adjust”: -20}

Simwood API v3.22
32

Per-Trunk Realtime Call Information

As with your account you can also view realtime “in progress” information on a per-trunk basis.

Where a trunk has a balance the three additional elements will be present which have the same meaning as
in your account snapshot but pertain only to the TRUNK specified;

 balance, percent_available, and approx_seconds_remaining

These are omitted where a trunk has no balance, but you can still view the current value of calls in progress.

NB Your account primary -L001 IP trunk does not support this feature.

/v3/voice/{ACCOUNT}/trunks/{TRUNK}/inprogress

GET Provides information on the calls currently in progress on the specified TRUNK

{
 "datetime": "2014-02-30 12:34:35",
 "total": 1.164,
 "callcount": 107,
 "balance": 24.406,
 "percent_available": 0.25,
 "approx_seconds_remaining": 56838,
}

Simwood API v3.22
33

Trunk IP Functions

The following applies only to trunks using IP-Based authentication, your primary trunk ({ACCOUNT}-L001) is
an example of one such trunk which does not require a SIP username and password.

Please ensure you only add IP addresses that you control and DELETE any that are no longer required.

Please note that that this functionality should NOT be used to update an account with dynamic IP addresses
- such installations, where unavoidable, should use authenticated SIP trunks as described above.

Trunk Password Functions

The following applies only to authenticated trunks (those using a username and password) or being used for
SIP registration.

NB It is not possible to specify a password for a trunk, they are automatically generated.
 

Likewise, the Operations Desk cannot recover a forgotten password, the only facility they have  
is to reset the password using the above functionality. Please keep your password(s) safe.

/v3/voice/{ACCOUNT}/trunks/{TRUNK}/acl

GET Request a list of IP address authorised on ip-based {TRUNK}

/v3/voice/{ACCOUNT}/trunks/{TRUNK}/acl/{IP}

PUT Add {IP} to ip-based {TRUNK}

DELETE Remove {IP} from ip-based {TRUNK}

/v3/voice/{ACCOUNT}/trunks/{TRUNK}/password_reset

POST Request and return a new password for this trunk.

NB The old password will be disabled immediately, any devices
configured to use this trunk will need reconfigured to continue to make
outbound calls.
{
 "updated":true,
 "trunk":"{TRUNK}",
 "user":"{TRUNK}",
 "pass":"e5d5aca5e39251bdc19554d3"
}

Simwood API v3.22
34

Outbound Destination Prefix ACLs

Not to be confused with IP ACLs (to determine which IPs can make outbound calls on a particular trunk)
Destination Prefix ACLs allow you to limit access on a per-account of per-trunk basis to certain destinations.

The ACL is specified in a JSON-encoded object as follows;

This would be encoded in JSON as follows;

This example would allow calls to all UK Geographic, 03 Numbers and all 08 Numbers except 0870.

Please note

(1) Longest prefix matching is used, so 44870 in the deny list will block even if 448 is allowed.
(2) If only allow is specified, this is treated as a whitelist. all other destinations will be denied.
(3) If only deny is specified, this is treated as a blacklist. all other destinations will be allowed.
(4) Account-level blocks will override any trunk settings.  

(e.g. a trunk cannot call a destination blocked at the account level)
(5) Trunk level blocks will override any account-level allows. 

(e.g. you may deny certain trunks access to destinations that are otherwise allowed)

Calls rejected due to failing a destination ACL rule will have the following X-Reason headers set in the SIP
response to the initial INVITE;
 X-Reason: 447700900123 matches trunk do not route 447
 X-Reason: 449098790000 matches customer do not route 449

Either one of these may have (cached) appended where the number has been blocked more than once in
the last 60s, in such case the prefix may not be shown.

NB The above ‘destination acl’ function is provided on a ‘best-efforts’ basis and is not intended as a
substitute for securing your own VoIP platform. You remain responsible for all calls made on your account.

allow Array Allowed Prefixes e.g. [441,442,443,448]

deny Array Denied Prefixes e.g. [44870]

/v3/voice/{ACCOUNT}/outbound/destinationacl  
/v3/voice/{ACCOUNT}/trunks/{TRUNK}/destinationacl

GET Retrieve active ACL on your account or trunk as specified

PUT Replace active ACL with the JSON object PUT.

The preferred method of doing this is to send the new ACL as the body of
the PUT request, however if your implementation does not support this
you may send the entire string in a single HTTP form encoded variable
‘payload’

DELETE Remove the ACL associated with the account or trunk  
 
Please note that the default is to allow access to ALL destinations without
restriction - please ensure this is what you want.

Simwood API v3.22
35

{"allow":[441,442,443,448],"deny":[44870]}

Trunk Routing Configuration

It is now possible to set a trunk-level routing configuration which will be used for any numbers associated
with it (and not having their own configuration) - this is ideal for customers who send calls for a group of
numbers to one destination, and another group of numbers to a different destination.

For full syntax and available options please refer to Number Routing Configuration below.

Bulk Number Association

As detailed below, inbound numbers can be associated with a trunk either for billing purposes only, or to
make use of its additional controls and/or routing configuration (where one does not exist on the number
itself). These associations can be created individually by updating each number as required, or where
multiple numbers are to be associated with the same trunk, it can be performed in a single request using the
following endpoint.

NB If a number has its own specific routing configuration, then any trunk association defined in the
‘options’ block will continue to take priority.

/v3/voice/{ACCOUNT}/trunks/{TRUNK}/config

GET Return configuration for {TRUNK}

PUT Replace active configuration with the JSON object PUT.

DELETE Remove configuration for {TRUNK}

/v3/voice/{ACCOUNT}/trunks/{TRUNK}/numbers

GET Return the currently associated numbers.
{
 “success”: true,
 “data”: [
 “443301223000”,
 “443301223001”,
 “443301223002”,
 ...
]
}

PUT Associate more numbers to the trunk, passing the numbers you wish to
append as an array, per the example below.
{
 “data”: [
 “443301223003”,
 “443301223004”,
 “443301223005”,
 ...
]
}

POST Replace the list of associated numbers entirely, passing the numbers you wish
to replace it with as an array. Passing an empty array will remove any direct
associations with this trunk.

NB All existing associations with this trunk will be removed!

Simwood API v3.22
36

When associating numbers to a trunk, any individual routing configuration currently set on those numbers will
need to be removed if your intention is for the configuration of the newly associated trunk to be followed. You
can do this for each number individually using the number’s own configuration endpoint, or alternatively, if
you wish to remove all number-level configuration at the same time as associating with the trunk, you can
include the optional force property:

NB Force removal of configs in this way is irreversible and if done so unintentionally, will need to
be added back one by one! 

{
 “data”: [
 “443301223100”,
 “443301223101”,
 “443301223102”,
 ...
]
}

Simwood API v3.22
37

{
 “data”: [
 “443301223100”,
 “443301223101”,
 “443301223102”,
 ...
],
 “force”: true
}

IDA Outbound Management

You can access your outbound SIP rates from any* standard BT landline using our shared IDA code 12940.  
Access is restricted to authorised CLIs.

IDA users are managed much like trunks (see above), each number added automatically creates a ‘trunk’ in
the form {ACCOUNT}-IDA01xxxxxxxxx, you will see these identifiers as the trunk in your CDRs and the
same settings can be applied as to trunks (see above)

Users making calls using the IDA service should dial the full number prefixed with 12940
e.g. to call 029 2120 2120 you would dial 1294002921202120

1. At present you cannot associate more than one CLI with a single IDA ‘trunk’  

2. If another Simwood customer has enabled a CLI for the IDA service you will  
not be able to associate the same CLI with your own account.

* Some landlines may not permit IDA calls

IDA for Virtual Interconnect (“Hosted IDA”)

Virtual Interconnect - Inbound customers using their own IDA codes should not use the above functionality.

Please contact us for more information on IDA for Virtual Interconnect.

/v3/voice/{ACCOUNT}/ida

GET Retrieve active IDAs on your account

/v3/voice/{ACCOUNT}/ida/{CLI}

GET Retrieve the details associated with this IDA User

PUT Create a new IDA user with the specified {CLI}

or (if additional parameters are supplied)
update an existing IDA user (see above "Trunk Management" for an example of
what parameters are available)

DELETE Delete the IDA user with the specified {CLI}

Simwood API v3.22
38

Inbound Numbering
Number Allocation

UK Number Ranges

/v3/numbers/{ACCOUNT}/ranges

GET Retrieves a list of all available UK number ranges, including descriptions. 
This is intended for customers to populate, for example, a drop down to allow
customers to select an area

NB This does not return international numbering at this time.
[
 {
 "id": "96fb9c60495aa3d4e05848b8e9fc4535",
 "prefix": "1209255",
 "sabc": "1209",
 "description": "Geographic - Redruth",
 "chargeband": "geo"
 },
 {
 "id": "aeed59d8024038d74b1109ac12642fb9",
 "prefix": "1237418",
 "sabc": "1237",
 "description": "Geographic - Bideford",
 "chargeband": "geo"
 },
 …
]

Simwood API v3.22
39

Available Numbers

Please note the above options (e.g. 1|10|100) are the only options, arbitrary values (e.g. /25) are not
supported. 

NB Some number types, e.g. OTT Mobile Numbers are only available as gold numbers at this time.

/v3/numbers/{ACCOUNT}/available/[all|gold|standard]/[1|10|100]

GET Returns 1,10 or 100 numbers available for allocation matching the pattern
specified.

One of all, gold, or standard should be specified in the URL;
all returns all available numbers matching pattern
gold returns only gold numbers matching pattern
standard returns only non-gold numbers matching pattern

pattern Search for numbers matching specified pattern  
(can use wildcards e.g *203*)

NB For backward compatibility, please note that if  
 country_code is not set, a search for 4420* and 20* are  
 identical and are assumed to be UK numbers (without  
 the leading 0). Similarly, a search for 1212* will be  
 assumed to be the UK (0121 2*), NOT the USA 1-212.

country_code Optional country code, currently only one of [1|44]
Defaults to 44 for UK numbering, use 1 for USA numbering.

[
 {
 "country_code":"44",
 "number":"1134032330",
 "recommended_gold_premium": 0,
 "wholesale_gold_premium" 0,
 "block":"03dd542cafcecf43fc06024ee6099311424c71cf",
 "bill_class":"Carrier",
 "SMS": 0
 }
]

/v3/numbers/{ACCOUNT}/available/consecutive/[10|20|30|40|50|60|..100]

POST Request a report of 10,20,30,40,50,60,70,80,90 or 100 consecutive numbers
available for allocation matching the pattern specified.  
 
NB This function currently does not support country_code or non UK
searches
pattern Search for numbers matching specified pattern  

(can use wildcards e.g *203*)

Simwood API v3.22
40

Allocated Numbering

Please note the above options (e.g. 1|10|100) are the only options, arbitrary values (e.g. /25) are not
supported. 

Gold Number Activation Fee
Where {NUMBER} is a Gold Number an activation fee will be charged

Number Rentals
There is an ongoing monthly fee for geographic numbers,  
please see https://simwood.com/pricing for more information

Last Call

/v3/numbers/{ACCOUNT}/allocated/all

POST Request a report of all current allocated numbers on account.

pattern Optionally specify to include only those numbers that match
the specified pattern  
(can use wildcards e.g *203*)

key Only return those numbers that match the specified key
in their metadata (see Advanced Routing below)
NB Keys are case-insensitive, wildcards not supported.

filter_config Only return numbers that have their own individual routing
configuration.

/v3/numbers/{ACCOUNT}/allocated/[10|100|1000|10000]

POST Request a report of the first [10 | 100 | 1,000 | 10,000] numbers that match
the optional pattern.

pattern Optionally specify to include only those numbers that match
the specified pattern  
(can use wildcards e.g *203*)

key Only return those numbers that match the specified key
in their metadata (see Advanced Routing below) 
NB Keys are case-insensitive, wildcards not supported.

filter_config Only return numbers that have their own individual routing
configuration.

/v3/numbers/{ACCOUNT}/allocated/{NUMBER}

GET Return configuration information on allocated {NUMBER}

PUT Allocate an available {NUMBER} to the account

DELETE De-configure and irrevocably remove {NUMBER} from account

/v3/numbers/{ACCOUNT}/allocated/{NUMBER}/lastcall

GET Returns a JSON object describing the most recent call to this number

Simwood API v3.22
41

$

$..

{
 “success":true,
 “data": {
 “calldate":"2017-05-01 12:34:01”,
 “cli":"07700900123",
 “disposition":"NORMAL_CLEARING",
 “billsec":"64",
 “duration":"68"
 }
}

Simwood API v3.22
42

Number Routing Configuration
 
Introduced in May 2014, the following is the preferred way of configuring a number, the previous method is
still detailed in this document but is deprecated and will be removed in a future revision of the API.

When a new configuration is provided this will take precedence over any existing configuration. 

/v3/numbers/{ACCOUNT}/allocated/{NUMBER}/config

GET Return configuration information on allocated {NUMBER}

See Configuration Syntax (New) below
{
 "routing": {
 "default": [
 [
 {
 "type": "sip",
 "endpoint": "441632960000@pbx.simwood.com"
 },
 {
 "type": "reg",
 "user": "930XXX-SIPUSER"
 }
],
 [
 {
 "type": "pstn",
 "number": "447700900123"
 }
]
]
 }
}

PUT Replace active configuration for {NUMBER} with the JSON object PUT.

The preferred method of doing this is to send the new routing
configuration as the body of the PUT request, however if your
implementation does not support this you may send the entire string in a
single HTTP form encoded variable ‘payload’
{"success": true}

If any error(s) occurred whilst validating the configuration these will be shown;

{
 "success": false,
 "errors": [
 "Message #1",
 "Message #2"
]
}

DELETE De-configure the configuration of {NUMBER} 
NB if configuration is still present on the /voice endpoint, it will be used

Simwood API v3.22
43

Similarly, it is now possible to set a trunk-level configuration which will be used for any numbers associated
with it (and not having their own configuration) - this is ideal for customers who send calls to a group of
numbers to a single destination, and another group of numbers to a different destination.

Lastly, the default configuration will be used for all numbers on your account where no other configuration
exists - this is ideal for customers who send all calls to a SIP URI and handle onward routing themselves

/v3/voice/{ACCOUNT}/trunks/{TRUNK}/config

GET Return configuration for {TRUNK}

PUT Replace active configuration with the JSON object PUT.

DELETE Remove configuration for {TRUNK}

/v3/numbers/{ACCOUNT}/default/config

GET Return default number configuration for {ACCOUNT}

PUT Replace active default configuration with the JSON object PUT

DELETE Remove default configuration

Simwood API v3.22
44

Number Configuration Syntax - Advanced

NB The syntax described in this section applies equally to number, trunk, and default configuration
endpoints.
 
Numbers are configured using a JSON object which is described below, offering increased flexibility over the
previous route configuration.

An example (annotated) configuration is below, and the full list of options can be found overleaf.

{

 "options": {
 ...
 },

 "rules": {
 "officehours": [
 {
 "dow": [1,2,3,4,5],
 "time": [0900,1700]
 }
]
 },

 "routing": {
 "officehours": [
 [
 {
 "type": "reg",
 "user": "930XXX-SIPUSER",
 "timeout": 30
 },
 {
 "type": "sip",
 "endpoint": "%e164@pbx.mycompany.com",
 "timeout": 30
 }
],

 [
 {
 "type": "pstn",
 "number": "447700900123"
 }
]
],

 "default": [
 [
 {
 "type": "pstn",
 "number": "447700900123"
 }
]
]

 },
 "meta": {
 ...
 }
}

Simwood API v3.22
45

Per number configuration options (detailed
below) apply to the number at all times

Rules define times of day that routing blocks
(below) apply, outwith the rules given - or if the
rules section is omitted entirely - the default
routing block will be used.

This block will run during the officehours time
block defined above (Mon-Fri 9am-5pm) and
will call the SIP endpoint shown and the user
on the registration proxy simultaneously.

After the timeout above (30s) we will try the
PSTN number provided

The default routing block will be used outwith
the office hours specified above. So calls
outside of normal office hours will be forwarded
directly to the PSTN number shown.

The meta block contains arbitrary metadata
that you want to associate with the number

See below for more information.

Number Configuration Syntax

"options"

The following options can be set on a per-number basis, they apply to the entire configuration at all times

Chargeable Options
Some options may incur additional monthly fees.  
Please see https://simwood.com/pricing for full information

enabled [true|false] Allows number to be disabled [false]
without removing the configuration.

Default [true]

block_payphone [true|false] Prevents inbound calls originating from
payphones

Default [false]

acr [true|false] Apply ACR to this number.
ACR Prevents calls originating from Withheld
numbers reaching this number. Withheld
callers will be diverted to a recorded
announcement.

Default [false]

trunk 9XXXXX-TRUNK Associate a trunk with this number for
billing purposes ONLY, shown in CDRs.

NB This does NOT result in the number being
routed to a registration-based SIP trunk. You
would need to use the appropriate ‘reg’
routing block.

You can also configure this using the endpoint 
/v3/numbers/[ACCOUNT]/allocated/
{NUMBER]/trunk.

This option is only relevant for number-level
configuration.

Default  
[9XXXXX-L001] or
your account
default inbound
trunk if different.

Simwood API v3.22
46

$..

"rules"

The ‘rules’ parameter in the JSON object should be an array of named objects (named using the characters
a-z and the _ character only) each of which defines a time period using the following parameters;

Example

dow Array of values
[1..7]

The days of week this rule is active (according to ISO 8601)
e.g. 1 = Monday, 7 = Sunday.
NB if one day must still be an array. e.g. [3] not 3

time Array [start,end] Array of two values, denoting the start and end time this rule
applies in 24h format (e.g. [0900,1700] would represent 9am -
5pm. The leading 0 can be omitted)

day Array of values
[1..31]

The days of month this rule is active
NB if one day must still be an array. e.g. [25] not 25

month Array of values
[1..12]

The months this rule is active
e.g. 1 = January, 12 = December.
NB if one day must still be an array. e.g. [3] not 3

Office Hours Mon - Fri  
0900-1700

"rules": {
 "officehours": [
 {
 "dow": [1,2,3,4,5],
 "time": [900,1700]
 }
]
}

Weekends Sat / Sun  
(All Day)

"rules": {
 "weekend": [
 {
 "dow": [6,7]
 }
]
}

Christmas  
/ New Year

Dec 25th  
December 26th
January 1st
January 2nd

"rules": {
 "christmasholiday": [
 {
 "month": [12],
 "day": [25,26]
 },{
 "month": [1],
 "day": [1,2]
 }
]
}

Simwood API v3.22
47

"routing"

Much like the rules above the ‘routing’ property is an array of objects named corresponding to the rules.
There is also the special ‘default’ rule, which applies when there are no rules specified or outwith the times
specified in the rules.

NB This property is mandatory and submitted config will be rejected without it.

Routing blocks (described below) can be arranged to allow dialling in parallel or in sequence, or a
combination of both as shown below;

Ring A & B simultaneously, Then C Ring A, B and C simultaneously

"routing": {
 "officehours": [
 [
 {
 BLOCK A
 },
 {
 BLOCK B
 }
],
 [
 {
 BLOCK C
 }
]
]
}

"routing": {
 "officehours": [
 [
 {
 BLOCK A
 },
 {
 BLOCK B
 },
 {
 BLOCK C
 }
]
]
}

Ring A, then B, then C

"routing": {
 "officehours": [
 [
 {
 BLOCK A
 },
],
 [
 {
 BLOCK B
 }
],
 [
 {
 BLOCK C
 }
]
]
}

Simwood API v3.22
48

"meta"

The ‘meta’ parameter in the JSON object allows you to store your own arbitrary data in the Simwood
database associated with a number and which can be easily accessed via the API.

The key parameter can be used to search for number(s) matching a specified key, the rest of the object  
is freeform up to a size limit of around 512 bytes.

Examples

The flexibility offered by the "meta" block enables customers to build a full service (e.g. offering number
translation services, fax to eMail or similar) without requiring a local database.

NB Meta attributes are intended for API use only and are NOT displayed in the portal. 
These attributes may be overwritten if a number is later configured using the portal.

key String [40 chars] A (non-unique) key for this number which you can use to
search for matching numbers, most commonly customers use
this to store a representation of their own customer account
ID or username.

NB Keys are treated as case-insensitive

.. .. The rest of the meta parameter can be composed of ANY
valid JSON structure, some example uses are given below.

In this example the key is used to store the customer
account ID.

The friendlyName is used to allow the customer to assign
a memorable name to the number in the customer
interface.

The lastUpdated parameter is used to show when a
number was last updated.

"meta": {
 "key": "403010",
 "friendlyName": "Main office number",
 "lastUpdated": "2014-02-30 01:20:30"
}

In this example the key is used to store the customer
eMail address and a password. This could be used to
build a simple portal for managing forwarding of one
number (e.g. a personal number redirection service)

NB This illustrates a potential use only - please do
NOT store clear text passwords in this manner.

"meta": {
 "key": "customer@example.com",
 "pass": "secretWord"
}

This shows how this could be used to store a note
associated with a number that hasn’t been configured
yet.

"meta": {
 "notes": "This is reserved for Brian
 at Example Corp and is not
 yet in use",
 "reserved": true
}

Simwood API v3.22
49

Routing Block

Each routing block is defined by a minimum of a ‘type’ and some optional parameters delay and timeout;

NB A number can be configured for either voice or fax routing  
It is not possible to simultaneously use the same number for voice and fax.

parameter values

type sip SIP endpoint

reg Registered SIP user

pstn PSTN Destination (i.e. voice call forwarding)

fax Receive as Fax to eMail or HTTP
NB fax cannot be used in conjunction with any other
endpoint

busy Busy tone

delay [1…n] Delay before executing this leg

timeout [1…n] Timeout for answer from this leg  
Not supported by busy or fax endpoints

Simwood API v3.22
50

Routing Block Additional Parameters

Depending on the type of endpoint selected above there are some additional endpoint-specific mandatory
and optional parameters;

type parameter

sip endpoint SIP Endpoint (user@host.com with optional :port
and ;transport parameters e.g.
%164@example.com:5060;transport=tcp)
the following substitutions will take place;

%e164 will be replaced with the full number in E164 format 
%ukn will be replaced with the number in UK National format

sdes One of optional, required, or none. If optional we will offer
SDES encryption for the audio on inbound calls. If set to
required, the call will not complete without successful
negotiation of SDES. If not specified, or set to none, SDES
will not be offered by default.

opus One of never, always, or only. Override the default handling
of Opus offers in INVITEs to your platform;  
 
never will suppress the Opus codec from the SDP, which may
be useful for UDP destinations to prevent long INVITEs
becoming fragmented as Opus does typically increase the
SDP payload by around 220 bytes.  
 
always will always offer the Opus codec, together with the
usual codec offering of G.722 and G.711, in the SDP.

only will offer the Opus codec only, excluding all other
codecs. This is ideal if your platform uses Opus and you can
support Opus for all calls, and still keeps the SDP to a size
that is unlikely to result in fragmentation

Simwood API v3.22
51

zone One of our zone names [slo, lon, ny or sj]..

If present, calls originating in the specified zone will be
passed to this endpoint, overriding any equal priority
endpoints without a zone specified.

This can be used together with multiple sip endpoints to
ensure that calls are routed in the most efficient way
depending on where they ingress the Simwood network. e.g.
calls arriving in London, will route to your own local proxy.

This will be particularly useful to customers with direct
connections to Simwood, or hosting their own equipment on-
net.

NB if a call originates from any zone which matches an
endpoint with a specific zone set, then any other
endpoints within that group will be disregarded.

If the call originates from a zone which does not match a
specific endpoint, any endpoint without a zone parameter
will be used.

There must always be one endpoint at the same level with
no zone specified.

type parameter

Simwood API v3.22
52

NB The ‘pstn’ endpoint is intended for voice calls only.  
We cannot guarantee successful transmission of fax or data calls forwarded to the  
PSTN using this functionality.

type parameter

reg user SIP registration user (e.g. 9xxxxx-USERNAME)

sdes One of optional or required. Defaults to optional, we will
offer SDES encryption for the audio on inbound calls to
registered endpoints. If set to required, the call will not
complete without successful negotiation of SDES.

opus One of never, always, or only. Override the default handling
of Opus offers in INVITEs to your platform;  
 
never will suppress the Opus codec from the SDP, which may
be useful for UDP destinations to prevent long INVITEs
becoming fragmented as Opus does typically increase the
SDP payload by around 220 bytes.  
 
always will always offer the Opus codec, together with the
usual codec offering of G.722 and G.711, in the SDP.

only will offer the Opus codec only, excluding all other
codecs. This is ideal if your platform uses Opus and you can
support Opus for all calls, and still keeps the SDP to a size
that is unlikely to result in fragmentation

NB if the user is not registered at the time the call is received this will be skipped
entirely, we advise you use another destination (or ‘busy’) in addition to a reg
endpoint.

pstn number Destination number in e164 format (e.g. 447700900123) 
NB the pstn divert function is intended for voice calls
only.

maxcpm Maximum cost per minute (in your billing currency) of the B
leg of the call, intended for use with NTS services to limit
exposure to expensive destinations or to ensure that the
destination number cost is covered by the revenue share from
the inbound leg. (e.g. 0.05)

maxcpc To be used in conjunction with the above, sets a maximum
call cost (e.g. connection cost)  
NB does not limit call duration to a cost ‘limit’

cli CLI to present when forwarding the call, if not specified will
present the callers CLI where it is available.

trunk The trunk to be associated (for billing and CDR purposes)
with the outbound (B-leg) (e.g. 9xxxxx-TRUNKNAME)

fax method One of http or mail

endpoint Destination eMail address or HTTP POST URI e.g. 
user@host.com 
http://www.yourdomain.com/cgi/inboundfax.php

busy no parameters available

Simwood API v3.22
53

http://www.yourdomain.com/cgi/inboundfax.php

Number Configuration Worked Examples

The above might seem complicated but corresponds to the following simple PHP example, which illustrates
the underlying structure;

Another advantage of this method is that you can retrieve the configuration as a JSON object via your
favourite programming language, edit the required entry in place and PUT the changed configuration back.

Call user@host.com over SIP for 20s, then try 447700900123 with custom CLI

{
 "routing": {
 "default": [
 [
 {"type": "sip", "endpoint": "user@host.com", "timeout": 20}
],
 [
 {"type": "pstn", "number": "447700900123", "cli": "442921202120", "maxcpm": 0.02}
]
]
 }
}

Forward all calls to 447700900123

{
 "routing": {
 "default": [
 [
 {
 "type": "pstn",
 "number": "447700900123"
 }
]
]
 }
}

Forward all calls to SIP endpoint

{
 "routing": {
 "default": [
 [
 {
 "type": "sip",
 "endpoint": "%did@sip.mycompany.com"
 }
]
]
 }
}

PHP Example of above

<?php
// Define the route
$arrayRouteDefinition = Array('type' => 'sip', 'endpoint' => ‘%did@sip.mycompany.com’);
// Add it to the ‘default’ routing block
$arrayRouting['default'][] = Array($arrayRouteDefinition);
// Add the routing configuration to the config
$arrayConfig['routing'] = $arrayRouting;
// encodedConfig now contains the JSON encoded routing
$encodedConfig = json_encode($arrayConfig);

Simwood API v3.22
54

Number Configuration Extended Example

Below is an extended example the meets the following requirements;

During business hours (Monday-Friday, 9am-5pm) connect the call over SIP to our
PBX at sip.mycompany.com.

If there is no response within 30 seconds, try the weekday out of hours mobile over the
PSTN on 07700900123.

During the weekend (Saturday and Sunday all day) send calls directly to the weekend
out of hours mobile on 07700900555

At all other times (so before 9am and after 5pm weekdays) send calls to the weekday
our of hours mobile on 07700900123

JSON of above

{
 "rules": {
 "officehours": [
 {
 "dow": [1,2,3,4,5],
 "time": [900,1700]
 }
],
 "weekend": [
 {
 "dow": [6,7]
 }
]
 },
 "routing": {
 "officehours": [
 [
 {
 "type": "sip",
 "endpoint": "%did@sip.mycompany.com",
 "timeout": 30
 }
],[
 {
 "type": "pstn",
 "number": "447700900123"
 }
]
],
 "weekend": [
 [
 {
 "type": "pstn",
 "number": "447700900555"
 }
]
],
 "default": [
 [
 {
 "type": "pstn",
 "number": "447700900123"
 }
]
]
 }
}

Simwood API v3.22
55

Number Fax Routing Configuration

NB A number can be configured for either voice or fax routing  
It is not possible to simultaneously use the same number for voice and fax.

Number Fax Configuration Worked Examples

As with the voice routing, the above might seem complicated but corresponds to the following PHP example,
which illustrates the underlying structure;

Another advantage of this method is that you can retrieve the configuration as a JSON object via your
favourite programming language, edit the required entry in place and PUT the changed configuration back.

Receive FAX and forward, by eMail, to user@example.com

{
 "routing": {
 "default": [
 [
 {"type": "fax", "method": "mail", "endpoint": "user@example.com"}
]
]
 }
}

Receive FAX as HTTP POST to http://example.com/api/inbound_fax

{
 "routing": {
 "default": [
 [
 {"type": "fax", "method": "http", "endpoint": "http://example.com/api/inbound_fax"}
]
]
 }
}

PHP Example of above

<?php
// Define the route
$arrayRouteDefinition = Array('type' => 'fax',
 ‘method’ => ‘mail’,
 ’endpoint’ => ‘user@example.com’);

// Add it to the ‘default’ routing block
$arrayRouting['default'][] = Array($arrayRouteDefinition);

// Add the routing configuration to the config
$arrayConfig['routing'] = $arrayRouting;

// encodedConfig now contains the JSON encoded routing
$encodedConfig = json_encode($arrayConfig);

Simwood API v3.22
56

Number Configuration - Success

Changes should take effect immediately, and the following simple JSON object will be returned;

Number Configuration - Errors

In the event of a configuration error a simple JSON object will be returned as follows;

NB Where any error is present in the configuration the extant configuration will remain in place
even if only one element has an error, the entire configuration will be rejected.

success true Will always be true when the routing has been successfully
updated.

success false Will always be false where any error was present.  
Your config will NOT have been changed.

errors Array This will contain an array of human-readable errors each will
include an indication of where the error was in your structure. 
A non-exhaustive list of these are below.

Setting ‘OPTION’ must be X, Y or Z An option in the "options" section has an invalid value, 
please select from one of the provided values

Invalid parameter ‘OPTION’ in settings A parameter in the "options" section is unrecognised. 
please remove this parameter

Rule name ‘NAME’ is invalid. Rule names must contain the characters shown only

[Rule|Routing Block] must be an array. Rules and routing blocks must be arrays, even if they
contain only one item.

Rule ‘NAME’ entry X parameter ‘PARAM’
is invalid.

The value provided for the parameter in the rule shown is
invalid.

Routing block 'NAME' does not match any
specified rules (or default)

A routing block has been specified that doesn’t correspond
to any time-dependant rules (or "default") - therefore would
never be called. Check your rule names match.

Unknown section ‘NAME’ in configuration. There is a section that is unrecognised, if you wish to store
your own information in a number configuration you may do
so but this must be within the ‘meta’ section (which can
contain anything)

Simwood API v3.22
57

Inbound Trunk Association
 
Inbound numbers can be associated with a trunk either for billing reconciliation purposes only, or to take
advantage of some of the trunk-specific controls and/or routing configuration for inbound traffic. If a number-
level configuration exists then this will take priority over any trunk-level configuration, which in turn, will take
priority over the default account-level configuration.

NB This does NOT result in the number being routed to a registration-based SIP trunk. You would need to
use the appropriate ‘reg’ routing block in either the Number or Trunk Configuration as shown above.

/v3/numbers/{ACCOUNT}/allocated/{NUMBER}/trunk

GET Get the trunk currently associated with this number

{
 "success": true,
 "data": {
 “trunk": “930XXX-ACMEPRODUCTS”
 }
}

PUT Associate this number with a trunk

JSON request trunk The trunk to associate with this number

JSON response {
 "success": true,
 "data": {
 “trunk": “930XXX-ACMEPRODUCTS”
 }
}

DELETE Remove the association with the trunk

Simwood API v3.22
58

Mobile Number Inbound SMS Configuration

NB Only mobile or OTT numbers can be configured for inbound SMS.  
 
UK Mobile Numbers will be able to receive SMS (this includes both OTT numbers and MSISDNs obtained
from Simwood, as well as SMS to numbers ported-in) - you can deliver these over HTTP to your own
platform.

/v3/numbers/{ACCOUNT}/allocated/{NUMBER}/sms

GET Request current inbound SMS configuration for the provided number

{
 "success": true,
 "data": {
 "mode": “http",
 “endpoint”: “http://api.yourdomain.com/path/to/mtsms.cgi”
 }
}

PUT Update SMS configuration for the provided mobile number

JSON request mode One of [http | http_json] 
Both use the HTTP method, however http posts data to your
script as application/x-www-form-urlencoded (much like a
typical HTML <form> would). This is now considered a
legacy configuration and does not support modern TLS
endpoints or Unicode messaging.

http_json makes an HTTP POST request with Content-type
application/json with the body of the request as a JSON
document (described below) - this is the preferred mode.

Only the http_json method supports TLS endpoints.

endpoint Only where mode is ‘http’ or 'http_json'
An HTTP(S) URL that will receive a POST request for each
SMS sent to this number. 
 
NB only the http_json method supports TLS endpoints.

{
 "mode": “http_json”,
 “endpoint”: “https://secure.api.yourdomain.com/path/to/mt"
}

JSON response {
 "success": true
}

DELETE Delete SMS configuration for this number

Simwood API v3.22
59

Number Configuration - 999 Emergency Services

Remember this information is to assist the Emergency Service response and you have a legal
obligation to ensure this information is provided fully and accurately to the best of your ability.

The name and address information should be sufficient to identify the premises or individual promptly in an
emergency. This is more important than it matching the ‘official’ record; for a business entry include only the
business details, do NOT specify your contact there or primary account holder etc as an individual.

Note 1 : Business Names
Business names should be chosen that best allow the Emergency Services to identify and locate the
business - typically this is the ‘name over the door’ rather than that of a parent or holding company
irrespective of who you address the bill to.

Note 2 - Business Suffix
Addition to business name (e.g. Ltd or Plc) this can also be used to include a brief description that identifies
the function of the business - e.g. "Hospital", "Hotel", "Fuel Storage Depot" provides valuable extra
information to the Emergency Services

Submission Charge
There is a charge for this service.  
Please see https://simwood.com/pricing for full information

/v3/numbers/{ACCOUNT}/allocated/{NUMBER}/999

GET Return current 999 information for {NUMBER}

PUT Replace current 999 details on {NUMBER}
Please note maximum field lengths indicated below

title 20 Individual End User Only  
Title (e.g. Mr, Ms, Mrs) 
Titles that disclose gender
are preferred by the
Emergency Services.

forename 20 Individual End User Only
Forename or Initials

name 50 Individual End User
Surname

Business End User
Business Name [See Note 1]

bussuffix 50 Business End User Only
Suffix (Ltd, Plc) [See Note 2]

premises 60 Mandatory for Individual and Business End Users
Identifies premises on a thoroughfare i.e. House Number
or Name (e.g. 104, The Lighthouse, Thatched Cottage)

thoroughfare 55 Mandatory for Individual and Business End Users
Street Name
(e.g. King Street, Station Road, Beech Avenue)

locality 30 Mandatory for Individual and Business End Users
Village or an area within an Town and Town if possible

postcode 12 Mandatory for Individual and Business End Users
The full current postcode as recognised by Royal Mail’s
PAF database. This must be in the form Out-code space
In code e.g. LS11 5DF, S9 5AD, S60 3ML

Simwood API v3.22
60

$

Number Validation

We provide a simple API endpoint to allow you to determine if a particular number is in a valid format and is
suitable for use as valid Caller ID.

This endpoint also provides other useful information about the number, such as the original Carrier (if
known), Country, Type of Number, and information from the local authority (e.g. Ofcom) where possible.

For UK numbers, the ofcom->valid_cli parameter can be used to determine if this number would be
accepted as valid Caller ID in the UK in accordance with Ofcom policy and General Condition C6. This takes
into account numbers (such as 09) which are valid numbers, but cannot be used as Caller ID.

NB This is not a "live" lookup like an HLR lookup or look-ahead routing lookup, the indication that a
number is 'valid' here solely confirms it appears to formatted correctly and does not indicate if the
number is in service. Furthermore, the carrier, where present, will reflect the original carrier of the  
number if a number has been ported to a new operator. 

/v3/numbers/{ACCOUNT}/validate/{NUMBER}

GET Validate the number provided (number should be in e.164 format) 
(e.g. the following result would be obtained from a GET request to  
/v3/numbers/{ACCOUNT}/validate/443301223000)
{
 "success": true,
 "data": {
 "valid": true,
 "country_code": "44",
 "iso": "gb",
 "national_number": "3301229999",
 "type": "uan",
 "carrier": "Simwood",
 "timezones": [
 "Europe\/Guernsey",
 "Europe\/Isle_of_Man",
 "Europe\/Jersey",
 "Europe\/London"
],
 "formatted": {
 "e164": "+443301229999",
 "national": "0330 122 9999",
 "international": "+44 330 122 9999"
 },
 "ofcom": {
 "status": "allocated",
 "use": "national non-geographic",
 "rh": "Simwood eSMS Limited",
 "date": "2010-07-20",
 "valid_cli": true
 }
 }
}

Simwood API v3.22
61

Number Lookup

We provide a simple API endpoint to allow you to look up the rangeholder information for a particular number
or number range.

This may be of use to customers looking to port numbers, however it should be noted that if a number has
previously been ported the LCP may not be the rangeholder

/v3/numbers/{ACCOUNT}/lookup/{NUMBER}

GET Lookup information on the number provided (number should in e.164 format) 
(e.g. the following result would be obtained from a GET request to  
/v3/numbers/{ACCOUNT}/lookup/443301223000)
{
 "success": true,
 "formatted": "+44(0)330 1223000",
 "data": {
 "code": "3301",
 "prefix": "330122",
 "rh": "Simwood eSMS Limited"
 }
}

Simwood API v3.22
62

BETA

Number Porting
Ports can be submitted, and viewed via the API.

There are different endpoints (and data required) depending on the type of port, it is imperative you use the
correct endpoint for the type of port requested.

Update December 2016
Please note that there are now two endpoints listed for each GNP API function as follows

/v3/porting/{ACCOUNT}/ports  
/v3/porting/{ACCOUNT}/gnp

We strongly recommend use of the /gnp endpoint for consistency with the new porting types, however  
the /ports endpoint provided historically will remain in service for backward compatibility.

type of number port type

UK Geographic Numbers 
01xxxxxxxxx
02xxxxxxxxx

GNP Geographic Number Porting is outlined in our Geographic
Number Portability Guide.

Numbers can be ported from most major fixed-line and VoIP
service providers and lead times are subject to the type of
port.

You must have authority from the end user to port a number,
and evidence of this may be requested.

UK Mobile Numbers 
07[1-9]xxxxxxxxx

MNP Mobile Number Portability is managed differently from GNP.

Numbers can be ported from all UK MNOs and MVNOs and
the port will typically take 2-3 days. The active mobile service
(and SIM) associated with the number will cease when the
port completes.

MNP requires a “PAC” (Porting Authorisation Code) to
authenticate the porting request. This is provided to the
existing subscriber by their Mobile Service Provider. This code
must be provided at the time of porting.

PACs are valid for 30 days.

UK Non-Geographic Numbers 
03xxxxxxxxxx  
08[457]xxxxxxx

At present, these numbers cannot be ported via the API. 
 
Some NGNs are portable, please contact the Porting Desk.

UK Premium Rate Numbers 
070xxxxxxxx  
09xxxxxxxxx

At present, these numbers cannot be ported

Simwood API v3.22
63

Geographic Number Porting (“GNP”)

New GNP [Geographic Number Porting] Submission 

Submission Charge
There is a charge for this service.  
Please see https://simwood.com/pricing for full information

Port Types  
Each port will be one of the following types, if unsure please contact the LCP before submission.  
Subsequent ports must be used where the number is already ported (i.e. the LCP is not the rangeholder)
Please observe the lead times in the Number Portability Guide when specifying a port_date.

The above is provided for guidance only, the Number Portability Guide should be consulted to determine
lead times for porting requests. 

/v3/porting/{ACCOUNT}/ports  
/v3/porting/{ACCOUNT}/gnp

POST Submit a new Geographic Number port.
The following must be submitted as a JSON object, an example is below

mbn Main Billing Number (MBN) in UK (01xxxxxxxxx) format

orig_ref For resubmissions only, the original order reference

lcp Losing Communications Provider (e.g. “BT”)

lcp_cupid The numeric CUPID of the LCP or hosting network, see
the /porting/{ACCOUNT}/lcps endpoint (detailed
below)

port_date
(Optional)

Porting date (CRD) in form YYYY-MM-DD HH:mm:ss
Please see minimum lead times below.
If omitted, will port as soon as possible.

contact_email A contact eMail address for the port (note this must be
the address of the submitter NOT your customer)

account_number The account number with the LCP (if known)

billing_postcode The postcode associated with the current installation  
This MUST match the records held by the LCP

type One of the port types listed below (e.g. “single”)

lines Number of lines in the existing installation

channels Number of channels in the existing installation

customer object* This must be a JSON object containing
each of the elements described
below  
NB This is NOT the same as 999

numbers array* An array of “number” objects, see below

single Single Line - 4 Working Days (14 if > 10 lines porting in same installation/time)

multi Multi Line - 7-17 Working Days (dependant on number of lines/numbers, see guide)

sub_single Single Line - 7 Working Days (17 if > 10 lines porting in same installation/time)

sub_multi Multi Line - 10-25 Working Days (dependant on number of lines/numbers, see guide)

Simwood API v3.22
64

$

Number Object

The ‘numbers’ array in the above should be an array of objects each with the following structure.  
These must include all numbers, including the MBN (even though it is specified separately)

Customer Object

 

parameter values

number 01xxxxxxxxx 
02xxxxxxxxx

Number in UK National format

type mbn Main Billing Number (must only be one of this type)

associated Associated Number (e.g. another DDI on an ISDN circuit)

other Other Number at the same address (but not associated)

action port Port this number to Simwood

retain Retain service on this number as-is (only for ‘other’ type)

drop Drop this number and cease service on the porting date

parameter max length

title 20 Individual End User Only  
Title (e.g. Mr, Ms, Mrs) 
Titles that disclose gender are
preferred by the Emergency
Services.

forename 20 Individual End User
Forename or Initials

Business End User
Forename/Initials of Signatory

name 50 Individual End User
Surname

Business End User
Surname of LoA Signatory

company 50 Business End User Only
Business Name

bussuffix 50 Business End User Only
Suffix (Ltd, Plc)

premises 60 Mandatory for Individual and Business End Users
Identifies premises on a thoroughfare i.e. House Number or Name
(e.g. 104, The Lighthouse, Thatched Cottage)

thoroughfare 55 Mandatory for Individual and Business End Users
Street Name (e.g. King Street, Station Road, Beech Avenue)

locality 30 Mandatory for Individual and Business End Users
Village or an area within an Town and Town if possible

postcode 12 Mandatory for Individual and Business End Users
The full current postcode as recognised by Royal Mail’s PAF
database. This must be in the form Out-code space In-code  
e.g. LS11 5DF, S9 5AD, S60 3ML

Simwood API v3.22
65

New Port Submission - Full Example

Response  
The response will be a JSON similar to the following;

 {
 "success": true,
 “ref”: 12345,
 “url”: “/v3/porting/{ACCOUNT}/ports/12345”
 }

The “ref” value corresponds to the ticket that will be used to track the progress of the porting request.

If any error(s) occurred whilst validating the configuration these will be returned as follows;

 {
 "success": false,
 "errors": ["Message #1”, “Message #2”]
 }

Port Resubmissions
When resubmitting a previously rejected port, please use the original porting order number in the orig_ref
parameter to ensure your port is processed and billed correctly at the reduced rate for resubmissions.

NB Failure to provide this will result in the port being processed as a new order and the normal porting  
fees applicable to the order type will apply. 

JSON of example porting request

{

 "mbn": "01632960100",
 "contact_email": “simwood.customer@example.com“,
 "lcp": “BT",
 “lcp_cupid”: “001”,
 "account_number": "NA1234B32",
 "billing_postcode": “A12 3BC",
 "type": “multi",
 “lines”: 1,
 “channels”: 30,
 "customer": {
 "title": "Mr",
 "forename": "John",
 "name": “Doe",
 “loa_initial”: “J”,
 “loa_surname”: “Doe”,
 "premises": "123",
 "thoroughfare": “Some Street",
 "locality": "Sometown",
 "postcode": “A12 3BC"
 },
 "numbers": [
 {"number": "01632960100", "type": "mbn", "action": "port"},
 {"number": "01632960101", "type": "associated", "action": “port"},
 {"number": "01632960102", "type": "associated", "action": “port"},
 {"number": "01632960103", "type": "associated", "action": “port"},
 {"number": "01632960104", "type": "associated", "action": “port"},
 {"number": "01632960105", "type": "associated", "action": “port"},
 {"number": "01632960106", "type": "associated", "action": “port"},
 {"number": "01632960290", "type": "other", "action": "retain"}
]
}

Simwood API v3.22
66

View Port List 

View Port Status  

/v3/porting/{ACCOUNT}/ports
/v3/porting/{ACCOUNT}/gnp

GET Get a list of currently outstanding, or recently completed (within the last 90
days) geographic number ports
{
 “success”: true,
 “data”: [
 {
 “ref”: “54721”
 “mbn”: “01632960100”,
 “date”: “2015-02-29”,
 “crd”: “2015-03-14”,
 “status_code”: “submitted_rh”
 “status”: “Submitted to RH”
 },
 {
 ...
 }
]
}

/v3/porting/{ACCOUNT}/ports/{ORDER_REFERENCE}  
/v3/porting/{ACCOUNT}/gnp/{ORDER_REFERENCE}

GET Get full detail as submitted, and history, of a port 
 

The customer and numbers elements will be returned as originally submitted
but are omitted here for clarity.
 

The events element contains a chronological history of the port.
{
 “success”: true,
 “data”: {
 "mbn": "01632960100",
 "status": "Porting Request Received",
 "status_code": "rcvd",
 "contact_email": “your.name@example.com“,
 "lcp": "BT",
 "rh": "BT",
 "account_number": "NA1234B32",
 "billing_postcode": "A12 3BC",
 "type": "multi",
 "lines": "1",
 "channels": "1",
 "customer": { ... },
 "numbers": [...],
 "events": [
 {
 "date": "2015-02-29 13:33:51",
 "status_code": “submitted_lcp",
 "status": "Submitted to LCP",
 },
 {
 "date": "2015-02-29 14:23:51",
 "status_code": "accepted",
 "status": "Porting Request Accepted",
 },
 {
 "date": "2015-02-29 13:33:51",
 "status_code": "rcvd",
 "status": "Porting Request Received",
 "info": "Order Submitted by API"
 }
]
 }
}

Simwood API v3.22
67

View Porting LCPs  

To be used when submitting new porting requests, this endpoint provides a list of available LCPs and the
corresponding CUPIDs.

This endpoint provides a list of all CPs with which we have established non-geographic porting agreements.
It is worth noting, however, that there may be other rangeholders we can port from where their range is
hosted by one of the CPs in this list.

NB When providing a CUPID in the API you can use either an integer (e.g. 1) or conventional format of 
the three digit string value (e.g. 001 for BT)

When submitting a porting request where a number is hosted by a different network, please  
provide the CUPID of the hosting network (e.g. an ITSP using Telephony Services for number  
hosting should have the lcp_cupid provided as “093”)

/v3/porting/{ACCOUNT}/lcps

GET Get list of LCP (Losing Communications Providers) we can port from and the
corresponding CUPIDs
{
 “success": true,
 "cps": [
 {
 "cpName": "BT",
 "cupid": "1"
 },
 {
 "cpName": "Telephony Services",
 "cupid": "93"
 },
 {
 "cpName": "Gamma Telecom",
 "cupid": "31"
 }
]
}

Simwood API v3.22
68

Mobile Number Porting (“MNP”)

New MNP [Mobile Number Porting] Submission 

The “ref” value returned corresponds to the ticket that will be used to track the progress of the porting
request.

Submission Charge
There is a charge for this service.  
Please see https://simwood.com/pricing for full information

View Port List 

/v3/porting/{ACCOUNT}/mnp

POST Submit a new Mobile Number port.

msisdn MSISDN (mobile number) in E.164 format e.g. 
447700900123

pac PAC for this number (e.g. ABC1234567)

contact_email A contact eMail address for the port (note this must be
the address of the submitter NOT your customer)

port_date  
[Optional]

Porting date (CRD) in form YYYY-MM-DD  
If omitted, will port as soon as possible.
(two working days from today)

{
 "success": true,
 “data”: {
 “pac”: “ABC1234567”,
 “msisdn”: “447700900123”,
 “date_port”: “2016-12-16”,
 “ref”: 43001
 }
}

/v3/porting/{ACCOUNT}/mnp

GET Get a list of currently outstanding, or recently completed mobile number
ports
{
 “success”: true,
 “data”: [
 {
 "pac": "ABC1234567",
 "msisdn": "447700900123",
 "date_added": "2016-12-06",
 "date_updated": "2016-12-06",
 "date_port": "2016-12-08",
 “status_code”: “pending”
 “status”: “Pending”
 "ref": 43001
 },
 {
 ...
 }
]
}

Simwood API v3.22
69

$

View Port Status  

MNP Exports

At this time it is not possible to generate a PAC from the API. Please raise a ticket via https://
support.simwood.com/ or by eMail to team@simwood.com to request a PAC for an MSISDN you have
imported.

/v3/porting/{ACCOUNT}/mnp/{PAC}

GET Get details of an MNP porting request
{
 “success”: true,
 “data”: {
 "pac": "ABC1234567",
 "msisdn": "447700900123",
 "date_added": "2016-12-06",
 "date_updated": "2016-12-06",
 "date_port": "2016-12-08",
 “status_code”: “pending”
 “status”: “Pending”
 "ref": 43001
 }
}

Simwood API v3.22
70

Fax and SMS Messaging

Inbound Fax Retrieval

Faxes received on your Simwood numbers can be retrieved via the API for a period of seven days from
receipt
and can be queried via the API

/v3/fax/{ACCOUNT}/inbound/[{NUMBER}]

GET Lists last seven days of inbound faxes (optionally filtered by NUMBER)

{
 “success”: true,
 “data”: [
 {
 “hash”: “7e2bb7bb87300ff83c657b04b07b8261”
 “time”: “2015-02-30 12;34:56”,
 “originator”: “07700900123”,
 “destination”: “443301223000”,
 “station”: “MYFAX”,
 “duration”: 31,
 “pages”: 1,
 “url”: “/v3/…./7e2bb7bb87300ff83c657b04b07b8261.pdf”
 }
]
}

/v3/fax/{ACCOUNT}/inbound/{NUMBER}/{HASH}

GET Retrieve specific fax in PDF format, where NUMBER is the destination fax
number and HASH is the hash in the HTTP POST request made to your
platform, or in the list retrieved above.

DELETE Force deletion of the specified fax HASH received on NUMBER.  
Faxes will be automatically deleted after seven days if not manually deleted.

Simwood API v3.22
71

Outbound SMS

If successful the message will be queued immediately and an id returned as follows;

If the extended parameter is included, additional information will be included in the response e.g;

/v3/messaging/{ACCOUNT}/sms

POST Send an SMS Message

to Recipient in e164 format (e.g. 447700900123) 

from Originator number in e.164 format or alpha-numeric
(maximum 11 characters if alphanumeric)

message Plain text message to send

flash
[optional]

Defaults to 0. If set to 1 message is sent as a ‘flash’
message  
(i.e. it will be displayed on the phone screen but not stored
in the recipient’s inbox, subject to handset and network
support)

replace
[optional]

Defaults to 0. If set to 1 message is sent with an instruction
to the handset to replace the previous. This must be set to
1 on both the original and replacement message.

concat
[optional]

An integer defining the maximum number of SMS to send
to deliver your message where it is too long for the normal
160 plain text character limit of a single SMS. The default
value of 1 will truncate your message if it is longer than
160 characters unless you set this parameter to a higher
value.

report
[optional]

URL for delivery report.  
The following placeholders can be used;

%id% Message ID

%status% Status Code

extended
[optional]

If set (1) will return extended information as below. This is
not enabled by default to ensure backward compatibility

Simwood API v3.22
72

[{"id":"02f150a0690171038624cc9d0e89207d"}]

{
 "success":true,
 "data":{
 "id":"1f40b0ac384cab838acf39a0e3e38bba",
 "desc":"SMS - United Kingdom",
 "parts":1,
 "charge":0.02,
 "currency":"GBP"
 }
}

Message Charge
There is a charge for sending SMS messages.  
Please see https://simwood.com/pricingfor full information

Simwood API v3.22
73

$

Outbound FAX

If submission is successful, the fax will be queued immediately and response returned as an array containing
the number and corresponding id of the submitted fax for each destination number;

Fax Content Types

To ensure faxes arrive as intended, all faxes should be sent in PDF format with an application/pdf mime type.
 

Message Charge
There is a charge for sending fax messages.  
Please see https://simwood.com/pricing for full information

/v3/messaging/{ACCOUNT}/fax

POST Send an Fax

to[] Recipient number in e164 format (e.g.447700900123) 

This parameter may be repeated multiple times, the [] are
part of the parameter name and must be included.

from Originator number in e.164 format.

file[] The PDF file to send. Please note that as of v3.9 only PDF
is supported and this must be POSTed as a file (per
RFC1867) (e.g. using an HTML form input type of "file")
with mime type application/pdf

Despite the inclusion of [] in the name, this parameter
cannot be repeated multiple times, however the [] are part
of the parameter name and must be included.

sendat
[optional]

Defaults to immediate, but a future date can be specified in
the form YYYY-MM-DD hh:mm:ss

priority
[optional]

Jobs in the queue are processed in order of priority, then by
submission date. Billing also depends on priority. 10 is
default, less than 10 being more urgent, more than 10
being non-urgent.

report
[optional]

URL for delivery report.  
The following placeholders can be used;

%id% Message ID

%status% Status Code

Simwood API v3.22
74

[{"number":"441632000123","id":"b902e8e46b91900af276f52995a3082e"},
{"number":"447700900123","id":"71cea3179fdd13271a2ac14a366941f8"}]

$

HTTP POST (Inbound Events)
Certain commands enable us to send data to your system over HTTP(S) in response to events rather than
commands. These events are:

- Fax received on a number configured for HTTP POST
- SMS received on a number configured for HTTP POST
- The status of outgoing SMS messages
- The progress of outgoing faxes

In all cases the message will be sent to the URL you specified and will intelligently retry until a HTTP
response with a status code of 200 and a non-zero length body is returned in response, which indicates
success.  
 
Your application must therefore raise an error code in the HTTP header (e.g. 500) in the event of a problem
rather than a plain text message in the body of the response. All responses are discarded.

Event-driven Webhooks

There are now a number of event-driven webhooks available which provide realtime information on calls in
progress, incoming and outgoing calls, along with call rejections and other account-wide events.

For more information see https://cdn.simwood.com/docs/simwood_webhooks_beta.pdf

Simwood API v3.22
75

Received Fax

When a fax is received on a number configured to relay them by HTTP POST you will receive an HTTP
POST message with a single parameter payload containing a JSON-encoded representation of the following;

Please note that faxes expire for your own security  
You must request the PDF from the URL provided within 5 minutes from successful receipt of the notification  

Description

app ‘fax_inbound’ in this case.  
This is to facilitate re-use of the same status receiver your side for multiple applications.

hash The unique hash for the fax, used as a reference and to retrieve the fax

data An object containing the following parameters:

id Unique ID for the fax

time Time fax was received (in form YYYY-MM-DD HH:mm:ss)

originator The CLI of the calling fax machine (if available)

destination The destination number (i.e. the Simwood number that received the fax)

status_msg A human readable status message (e.g. "Ok")

status_code The above in a form which should be quoted on any ticket raised.

bps The speed of fax receipt in bits per second.

station If present, the CSID of the remote fax machine.

duration The billable time (in seconds) used to receive the fax.

pages The number of pages received

url The URL where the fax (in PDF format) can be retrieved, takes the form 
https://api.simwood.com/v3/files/{ACCOUNT}/fax-NNNNNNNNNNNNNNNNN

Simwood API v3.22
76

https://api.simwood.com/v3/files/9xxxxx/fax-NNNNNNNNNNNNNNNNN

Received Fax (Beta)

When a fax is received on a number configured to relay them by the http_json method you will receive an
HTTP POST message of Content-type application/json with the following JSON body;

Your endpoint can support (or require) TLSv1.1, TLSv1.2.  
Please note that SSLv3 and TLSv1 are not supported by this service.

Please note that faxes expire for your own security  
You must request the PDF from the URL provided within 5 minutes from successful receipt of the notification  

Description

app ‘fax_inbound_beta’ in this case.  
NB This field exists to facilitate re-use of the same status receiver your side for multiple
applications. However as this is a beta this is subject to change and it is strongly
recommended to use a dedicated URL to receive HTTP requests.

id A unique ID representing this request e.g. fi_422296075c882529362765a39aa75b19

data An object containing the following parameters:

id Unique ID for the fax

time Time fax was received (in form YYYY-MM-DD HH:mm:ss)

originator The CLI of the calling fax machine (if available)

destination The destination number (i.e. the Simwood number that received the fax)

status_msg A human readable status message (e.g. "Ok")

status_code The above in a form which should be quoted on any ticket raised.

bps The speed of fax receipt in bits per second.

station If present, the CSID of the remote fax machine.

duration The billable time (in seconds) used to receive the fax.

pages The number of pages received

url The URL where the fax (in PDF format) can be retrieved, takes the form 
https://api.simwood.com/v3/files/{ACCOUNT}/fax-NNNNNNNNNNNNNNNNN

Simwood API v3.22
77

BETA

https://api.simwood.com/v3/files/9xxxxx/fax-NNNNNNNNNNNNNNNNN

Received SMS (http) - Deprecated

When an SMS is received on a number configured to relay them by using the legacy http method you will
receive an HTTP sPOST message of Content-type application/x-www-form-urlencoded with a single
parameter payload containing a JSON-encoded representation of the following;

Please note your endpoint cannot require TLSv1.1 or higher. The legacy SMS service supports
SSLv3 and TLSv1 only (or plain http) for TLS support please use the service described below (with
type http_json)

For your security we do not retain message content after relay to your own platform

Description

app ‘mvno_inbound_sms’ in this case.  
This is to facilitate re-use of the same status receiver your side for multiple applications.

id A unique ID representing this request e.g. si_422296075c882529362765a39aa75b19

data An object containing the following parameters:

time Timestamp of message (in form YYYY-MM-DD HH:mm:ss) 
Where available from the originating network.

originator The MSISDN or Originator of the SMS message

destination The destination number (i.e. the Simwood number that received the SMS)

message The content of the SMS message

length The length (characters) of the SMS message.

Simwood API v3.22
78

Received SMS (http_json)

When an SMS is received on a number configured to relay them by using the http_json method you will
receive an HTTP POST message of Content-type application/json with the following JSON body;

Your endpoint can support (or require) TLSv1.1, TLSv1.2.  
Please note that SSLv3 and TLSv1 are not supported by this service.

An example full message is shown below

For your security we do not retain message content after relay to your own platform

Description

app ‘sms_inbound’ in this case.  
NB This field exists to facilitate re-use of the same URL for multiple applications.  
However we strongly recommended to use a dedicated URL where possible.

id A unique ID representing this request e.g. si_422296075c882529362765a39aa75b19

data An object containing the following parameters:

time Timestamp of message (in form YYYY-MM-DD HH:mm:ss) 
Where available from the originating network.

originator The MSISDN or Originator of the SMS message

destination The destination number (i.e. the Simwood number that received the SMS)

message The content of the SMS message

length The length (characters) of the SMS message.

Simwood API v3.22
79

{
 "app": "sms_inbound",
 "id": "si_422296075c882529362765a39aa75b19",
 "data": {
 "originator": "447700900321",
 "destination": "447700900123",
 "length": 12,
 "message": "Hello World."
 }
}

Outbound Fax Reports

Where a report field was specified for an outgoing fax, we will make a POST to the URL specified. If present,
‘%id%’ in your URL will be replaced by the message ID returned in the response below and ‘%status%’ will
be replaced with the status code.

Additionally the POSTed data will contain a single parameter called payload, the value of which will be a
JSON encoded representation of the following.

Description

app ‘faxsend_status’ in this case.  
This is to facilitate re-use of the same status receiver your side for multiple applications.

id The unique id for the fax returned when it was submitted.

data An object containing the following parameters:

dtime The date/time the status was generated.

status A numeric indication of status. There will typically be three.
1 Queued: The fax has been queued to the fax server. 

For scheduled faxes this will happen at the specified time.
5 Processing: We have begun conversion and transmission of fax
10 OK: Fax transmission completed successfully
>10 Fax transmission may not have completed successfully, please  

see the status_msg and supplementary fields for more details.

status_msg A human readable status

station If present, the CSID of the remote fax machine.

duration The billable time (in seconds) spent on your fax. Note, as we employ an
intelligent retry system this may be the sum of several transmissions.

errors The number of transmission errors.

retries The number of retries required.

Simwood API v3.22
80

Outbound SMS Delivery Reports (DLRs)

Where a report field was specified for an outgoing SMS, we will make a POST to the URL specified. If
present, ‘%id%’ in your URL will be replaced by the message ID returned in the response below and
‘%status%’ will be replaced with the status code.

Additionally the POSTed data will contain a single parameter called payload, the value of which will be a
JSON encoded representation of the following.

Field Description

app ‘sms_send_status’ in this case. This is to facilitate re-use of the same status receiver your side
for multiple applications.

id The unique id for the SMS returned when it was submitted.

data An object containing the following parameters:

dtime The date/time the status was generated. Note, this is the time the status was
generated or received by Simwood. For example, in the case of a delivery
report it will not the time of actual delivery but the time we learned of delivery.

status A numeric indication of status. There will typically be three for SMS.

1 Received: This will be raised immediately the SMS is committed to a  
queue at Simwood. Generally this will be simultaneous with your 
message submission but messages will be queued between the API 
and Simwood systems for performance.

2 Submitted: The SMS has left Simwood. Again, this will generally
coincide with your submission and status 1 above but queueing at 
every stage affords scalability and performance enhancement.

11 Delivered: Confirmation received from the handset of delivery.
Generally this will be 4 seconds or so after the above for a handset  
in signal.

12 Rejected: Message was rejected, has not been delivered and will  
not be retried.

13 Error: There was a syntax error with the message, usually relating to  
invalid destination address but in some cases disallowed source  
address.

14 Queued: Message has been buffered for delivery in transit. This
usually indicates the phone is off or out of service coverage.

18 SMSCa: Message has been accepted by the SMSC. For networks 
where delivery reports are unavailable, this is the closest status to a  
delivery receipt.

26 SMSCr: Message was rejected by the SMSC and will not be retried.

Simwood API v3.22
81

Change Log / Document History

Version Date Author Notes

3.21 2023-08-31 AL Minor link updates

3.21 2023-04-20 CC Minor corrections and clarifications to trunk bulk number association resource

3.20 2023-02-08 CC Deprecate ‘outbound’ resource for trunk-related config in favour of new ‘trunks'
resource
Introduce trunk routing config and bulk number association
Update wording relating to number / trunk association and routing preference

3.19.6 2022-05-25 AL Remove ‘prefixacl’ and ‘rateacl’ as not currently implemented

3.19.5 2021-08-25 AL Remove ‘alert available’ as not currently implemented

3.19.4 2021-07-28 AL Cosmetic only

3.19.3 2021-07-28 GD Report Retrieval returns 204 No Content

3.19.2 2021-01-07 GD Temporary removal of access to non-call related charges

3.19.1 2020-08-25 CC Remove references to mirror.simwood.com and deprecated Manchester AZ

3.19 2020-06-16 RM Expose available balance warnings

3.18 2020-04-06 RM Introduce number validation functions

3.17 2020-03-28 RM Enable USA Numbering Search

3.16.2 2020-01-27 RM Balance related rate limit changed to 30/10s

3.16.1 2019-11-05 RM Minor corrections

3.16 2019-10-28 RM Introduction of Global Numbering channel allocation.

3.15.1 2019-10-13 RM Clarifications to HTTP Post Inbound Events

3.15 2019-10-02 RM Changes to notifications, reference to Webhook functionality

3.14 2019-09-23 RM New call control functionality

3.13.1 2019-07-16 RM Correction to SMS

3.13 2019-06-07 RM SMS Updates

3.12.2 2019-03-29 RM Minor changes / corrections

3.12.1 2019-02-16 RM Minor changes to trunk controls

3.12 2018-10-05 RM Changes to trunk controls and CDR functionality for GC C6

3.11.6 2018-05-23 RM Minor changes / corrections

3.11.5 2018-05-08 RM Data retention policy chages

3.11.4 2018-05-02 RM New availability zone filters on inbound configuration

3.11.3 2018-04-23 RM New Inbound SMS Beta  
Removed deprecated number configuration method

3.11.2 2018-01-18 RM Additional trunk limit controls

3.11.1 2017-12-20 RM Changes to codec handling

3.11.0 2017-12-18 RM Graduation of many “BETA” functions

3.10.7 2017-08-04 RM Minor changes / corrections

3.10.6 2017-08-02 RM Correction to porting LCP function

3.10.5 2017-07-20 RM Additional information for inbound HTTP POST messages

3.10.4 2017-06-26 RM Minor changes and clarifications

Version

Simwood API v3.22
82

The latest version of this document can always be obtained from https://cdn.simwood.com/docs/simwood_apiv3.pdf

3.10.3 2017-06-19 RM Improvements to BETA voice stack functions inc SDES support 
Number porting no longer considered BETA API

3.10.2 2017-06-15 RM Additional BETA voice stack functions

3.10.1 2017-05-17 RM Corrections and clarification of numbering endpoints 
Correction of supported fax formats

3.10.0 2017-03-01 RM Deprecation of non-HTTPs (SSL/TLS) endpoints

3.9.25 2017-02-26 RM Minor changes

3.9.24 2016-12-07 RM MNP Mobile Number Porting  
Numbering changes (OTT)
Document structure changes

3.9.23 2016-11-14 RM Withdrawn – not released

3.9.22 2016-11-09 RM Call routing improvements including NTS B-leg trunk

3.9.21 2016-08-04 RM Trunk improvements

3.9.20 2016-07-14 RM New trunk features

3.9.19 2015-02-09 RM Expose recent rejections in API

3.9.18 2015-12-17 RM Porting changes, additional functionality

3.9.17 2015-12-04 RM Channel allocations

3.9.16 2015-12-01 RM Improvements to porting

3.9.15 2015-10-30 RM Deprecate combined rate endpoints in favour of CSV format 
Minor changes

3.9.14 2015-10-01 RM New fax archive functionality

3.9.13 2015-09-26 RM Minor changes / corrections

3.9.12 2015-09-15 RM Minor changes / corrections

3.9.11 2015-08-31 RM Remove deprecated routing functions 
Updated references for Simwood Mobile

3.9.10 2015-07-22 RM Revisions to porting

3.9.9 2015-07-02 RM Added CSV Ratecards 
Additional minor changes

3.9.7 2014-12-10 RM Added notification history  
Identify chargeable endpoints

3.9.6 2014-12-04 RM Improvements to Trunk Balances
Added per-trunk realtime call information

3.9.5 2014-11-21 RM Porting submission now supports CRD (port_date) 
Additional “instant” CDR reports
Last call function on numbering
Inbound Trunks

3.9.4 2014-11-12 RM Add porting submission

3.9.3 2014-10-20 RM Add retrieval of PDF invoices

3.9.2 2014-10-09 RM Minor changes

3.9.1 2014-08-07 RM Clarification of Trunk Configuration

3.9 2014-08-06 RM Initial Release of 3.9

Date Author NotesVersion

Simwood API v3.22
83

The contents of this document are the copyright of Simwood eSMS Limited. All rights reserved. The contents of this
document, or any part thereof, may not be reproduced, modified, redistributed without prior written consent.

Simwood API v3.22
84

	Customer API | v3.22
	Overview
	Document Conventions
	Technical
	Architecture

	Basic Operations
	Basic GET Requests
	JSON Output Format
	Authenticating Requests
	PUT and DELETE requests
	POST requests / Reports

	API Endpoints
	Tools
	Account Management
	Credit Account Management
	Prepay Account Management
	Termination Rate Functions
	General Accounting Reports / CDRs
	Summary Reports (Instant)
	Event Notifications

	Voice Termination
	Account Limits (and Dynamic Channel Limits)
	Adjusting your Channel Allocation
	Channel Statistics
	Real-Time Calls in Progress
	Call Control
	Voice CDRs (Inline Response)
	Rejected Calls

	Voice Trunks
	Trunk Management
	Trunk Balances
	Per-Trunk Realtime Call Information
	Trunk IP Functions
	Outbound Destination Prefix ACLs
	Trunk Routing Configuration
	Bulk Number Association
	IDA Outbound Management

	Inbound Numbering
	Number Allocation
	Number Routing Configuration
	Inbound Trunk Association
	Mobile Number Inbound SMS Configuration
	Number Validation
	Number Lookup

	Number Porting
	Geographic Number Porting (“GNP”)
	Mobile Number Porting (“MNP”)

	Fax and SMS Messaging
	Inbound Fax Retrieval
	Outbound SMS
	Outbound FAX

	HTTP POST (Inbound Events)
	Event-driven Webhooks
	Received Fax
	Received Fax (Beta)
	Received SMS (http) - Deprecated
	Received SMS (http_json)
	Outbound Fax Reports
	Outbound SMS Delivery Reports (DLRs)

	Change Log / Document History

